
Christopher Cappa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4084951/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science, 2018, 359, 760-764.	6.0	716
2	Aerosol emission and superemission during human speech increase with voice loudness. Scientific Reports, 2019, 9, 2348.	1.6	709
3	Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon. Science, 2012, 337, 1078-1081.	6.0	618
4	Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. Reviews of Geophysics, 2017, 55, 509-559.	9.0	548
5	Energetics of Hydrogen Bond Network Rearrangements in Liquid Water. Science, 2004, 306, 851-853.	6.0	476
6	Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon. Atmospheric Chemistry and Physics, 2010, 10, 4207-4220.	1.9	442
7	Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7550-7555.	3.3	439
8	Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5802-5807.	3.3	401
9	Brown carbon and internal mixing in biomass burning particles. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14802-14807.	3.3	394
10	Unified description of temperature-dependent hydrogen-bond rearrangements in liquid water. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14171-14174.	3.3	369
11	Isotopic fractionation of water during evaporation. Journal of Geophysical Research, 2003, 108, .	3.3	365
12	Efficacy of masks and face coverings in controlling outward aerosol particle emission from expiratory activities. Scientific Reports, 2020, 10, 15665.	1.6	284
13	Enhanced light absorption by mixed source black and brown carbon particles in UK winter. Nature Communications, 2015, 6, 8435.	5.8	266
14	Relationship between Oxidation Level and Optical Properties of Secondary Organic Aerosol. Environmental Science & Technology, 2013, 47, 6349-6357.	4.6	265
15	Evaluation of recently-proposed secondary organic aerosol models for a case study in Mexico City. Atmospheric Chemistry and Physics, 2009, 9, 5681-5709.	1.9	261
16	Bias in Filter-Based Aerosol Light Absorption Measurements Due to Organic Aerosol Loading: Evidence from Ambient Measurements. Aerosol Science and Technology, 2008, 42, 1033-1041.	1.5	246
17	Quantitative estimates of the volatility of ambient organic aerosol. Atmospheric Chemistry and Physics, 2010, 10, 5409-5424.	1.9	233
18	Soot Particle Studies—Instrument Inter-Comparison—Project Overview. Aerosol Science and Technology, 2010, 44, 592-611.	1.5	228

#	Article	IF	CITATIONS
19	Rethinking the global secondary organic aerosol (SOA) budget: stronger production, faster removal, shorter lifetime. Atmospheric Chemistry and Physics, 2016, 16, 7917-7941.	1.9	216
20	The heterogeneous reaction of hydroxyl radicals with sub-micron squalane particles: a model system for understanding the oxidative aging of ambient aerosols. Atmospheric Chemistry and Physics, 2009, 9, 3209-3222.	1.9	211
21	Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior. Atmospheric Chemistry and Physics, 2011, 11, 1895-1911.	1.9	210
22	The structure of ambient water. Molecular Physics, 2010, 108, 1415-1433.	0.8	209
23	Saturation Vapor Pressures and Transition Enthalpies of Low-Volatility Organic Molecules of Atmospheric Relevance: From Dicarboxylic Acids to Complex Mixtures. Chemical Reviews, 2015, 115, 4115-4156.	23.0	196
24	Atmospheric Processes and Their Controlling Influence on Cloud Condensation Nuclei Activity. Chemical Reviews, 2015, 115, 4199-4217.	23.0	185
25	Microbial Control of Sea Spray Aerosol Composition: A Tale of Two Blooms. ACS Central Science, 2015, 1, 124-131.	5.3	172
26	Effects of Alkali Metal Halide Salts on the Hydrogen Bond Network of Liquid Water. Journal of Physical Chemistry B, 2005, 109, 7046-7052.	1.2	159
27	The complex chemical effects of COVID-19 shutdowns on air quality. Nature Chemistry, 2020, 12, 777-779.	6.6	154
28	Bias in Filter-Based Aerosol Light Absorption Measurements Due to Organic Aerosol Loading: Evidence from Laboratory Measurements. Aerosol Science and Technology, 2008, 42, 1022-1032.	1.5	151
29	Raman Thermometry Measurements of Free Evaporation from Liquid Water Droplets. Journal of the American Chemical Society, 2006, 128, 12892-12898.	6.6	150
30	Analysis of Organic Anionic Surfactants in Fine and Coarse Fractions of Freshly Emitted Sea Spray Aerosol. Environmental Science & Technology, 2016, 50, 2477-2486.	4.6	143
31	Effect of voicing and articulation manner on aerosol particle emission during human speech. PLoS ONE, 2020, 15, e0227699.	1.1	138
32	Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation. Journal of Geophysical Research, 2011, 116, .	3.3	129
33	Aircraft Instrument for Comprehensive Characterization of Aerosol Optical Properties, Part 2: Black and Brown Carbon Absorption and Absorption Enhancement Measured with Photo Acoustic Spectroscopy. Aerosol Science and Technology, 2012, 46, 555-568.	1.5	126
34	Multi-generation gas-phase oxidation, equilibrium partitioning, and the formation and evolution of secondary organic aerosol. Atmospheric Chemistry and Physics, 2012, 12, 9505-9528.	1.9	124
35	Effects of Cations on the Hydrogen Bond Network of Liquid Water:Â New Results from X-ray Absorption Spectroscopy of Liquid Microjets. Journal of Physical Chemistry B, 2006, 110, 5301-5309.	1.2	119
36	Impact of Fuel Quality Regulation and Speed Reductions on Shipping Emissions: Implications for Climate and Air Quality. Environmental Science & Technology, 2011, 45, 9052-9060.	4.6	115

#	Article	IF	CITATIONS
37	Investigation of volatile liquid surfaces by synchrotron x-ray spectroscopy of liquid microjets. Review of Scientific Instruments, 2004, 75, 725-736.	0.6	114
38	Molecular Diversity of Sea Spray Aerosol Particles: Impact of Ocean Biology on Particle Composition and Hygroscopicity. CheM, 2017, 2, 655-667.	5.8	111
39	Kinetic 170 effects in the hydrologic cycle: Indirect evidence and implications. Geochimica Et Cosmochimica Acta, 2004, 68, 3487-3495.	1.6	109
40	Measurements of ocean derived aerosol off the coast of California. Journal of Geophysical Research, 2012, 117, .	3.3	100
41	Light Absorption by Ambient Black and Brown Carbon and its Dependence on Black Carbon Coating State for Two California, USA, Cities in Winter and Summer. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1550-1577.	1.2	99
42	Determination of Evaporation Rates and Vapor Pressures of Very Low Volatility Compounds:  A Study of the C4â^'C10 and C12 Dicarboxylic Acids. Journal of Physical Chemistry A, 2007, 111, 3099-3109.	1.1	96
43	Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES). Atmospheric Chemistry and Physics, 2012, 12, 7647-7687.	1.9	94
44	pH Dependence of the Electronic Structure of Glycine. Journal of Physical Chemistry B, 2005, 109, 5375-5382.	1.2	92
45	OH chemistry of non-methane organic gases (NMOGs) emitted from laboratory and ambient biomass burning smoke: evaluating the influence of furans and oxygenated aromatics on ozone and secondary NMOG formation. Atmospheric Chemistry and Physics, 2019, 19, 14875-14899.	1.9	92
46	Probing the Local Structure of Liquid Water by X-ray Absorption Spectroscopyâ€. Journal of Physical Chemistry B, 2006, 110, 20038-20045.	1.2	91
47	Absorption Enhancement of Coated Absorbing Aerosols: Validation of the Photo-Acoustic Technique for Measuring the Enhancement. Aerosol Science and Technology, 2009, 43, 1006-1012.	1.5	91
48	Modeling the Multiday Evolution and Aging of Secondary Organic Aerosol During MILAGRO 2006. Environmental Science & Technology, 2011, 45, 3496-3503.	4.6	90
49	Enrichment of Saccharides and Divalent Cations in Sea Spray Aerosol During Two Phytoplankton Blooms. Environmental Science & Technology, 2016, 50, 11511-11520.	4.6	90
50	Aging of Atmospheric Brown Carbon Aerosol. ACS Earth and Space Chemistry, 2021, 5, 722-748.	1.2	87
51	Radiative absorption enhancements by black carbon controlled by particle-to-particle heterogeneity in composition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5196-5203.	3.3	84
52	Influences of emission sources and meteorology on aerosol chemistry in a polluted urban environment: results from DISCOVER-AQ California. Atmospheric Chemistry and Physics, 2016, 16, 5427-5451.	1.9	80
53	Evidence for liquid-like and nonideal behavior of a mixture of organic aerosol components. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18687-18691.	3.3	76
54	The Essential Role for Laboratory Studies in Atmospheric Chemistry. Environmental Science & Technology, 2017, 51, 2519-2528.	4.6	75

#	Article	IF	CITATIONS
55	Acidity across the interface from the ocean surface to sea spray aerosol. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	73
56	Oxygenated Aromatic Compounds are Important Precursors of Secondary Organic Aerosol in Biomass-Burning Emissions. Environmental Science & amp; Technology, 2020, 54, 8568-8579.	4.6	72
57	Understanding the optical properties of ambient sub- and supermicron particulate matter: results from the CARESÂ2010 field study in northern California. Atmospheric Chemistry and Physics, 2016, 16, 6511-6535.	1.9	70
58	Secondary organic aerosol formation from the laboratory oxidation of biomass burning emissions. Atmospheric Chemistry and Physics, 2019, 19, 12797-12809.	1.9	67
59	A model of aerosol evaporation kinetics in a thermodenuder. Atmospheric Measurement Techniques, 2010, 3, 579-592.	1.2	66
60	Methane, Carbon Dioxide, and Nitrous Oxide Emissions from Septic Tank Systems. Environmental Science & Technology, 2011, 45, 2741-2747.	4.6	66
61	The Impact of Aerosol Particle Mixing State on the Hygroscopicity of Sea Spray Aerosol. ACS Central Science, 2015, 1, 132-141.	5.3	64
62	Nature of the Aqueous Hydroxide Ion Probed by X-ray Absorption Spectroscopy. Journal of Physical Chemistry A, 2007, 111, 4776-4785.	1.1	63
63	Biomass-burning-derived particles from a wide variety of fuels – Part 1: Properties of primary particles. Atmospheric Chemistry and Physics, 2020, 20, 1531-1547.	1.9	62
64	Kinetics of the CH3O2+ NO Reaction:Â Temperature Dependence of the Overall Rate Constant and an Improved Upper Limit for the CH3ONO2Branching Channel. Journal of Physical Chemistry A, 1999, 103, 4378-4384.	1.1	61
65	Evaporation Rates and Vapor Pressures of the Even-Numbered C8â^'C18 Monocarboxylic Acids. Journal of Physical Chemistry A, 2008, 112, 3959-3964.	1.1	58
66	Sensitivity of Aerosol Refractive Index Retrievals Using Optical Spectroscopy. Aerosol Science and Technology, 2014, 48, 1133-1144.	1.5	58
67	A case study into the measurement of ship emissions from plume intercepts of the NOAA ship <i>Miller Freeman</i> . Atmospheric Chemistry and Physics, 2014, 14, 1337-1352.	1.9	58
68	Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 2: Assessing the influence of vapor wall losses. Atmospheric Chemistry and Physics, 2016, 16, 3041-3059.	1.9	57
69	Effect of heterogeneous oxidative aging on light absorption by biomass burning organic aerosol. Aerosol Science and Technology, 2019, 53, 663-674.	1.5	55
70	Optical Properties of Wintertime Aerosols from Residential Wood Burning in Fresno, CA: Results from DISCOVER-AQ 2013. Environmental Science & Technology, 2016, 50, 1681-1690.	4.6	54
71	Establishing the impact of model surfactants on cloud condensation nuclei activity of sea spray aerosol mimics. Atmospheric Chemistry and Physics, 2018, 18, 10985-11005.	1.9	54
72	On the effectiveness of nitrogen oxide reductions as a control over ammonium nitrate aerosol. Atmospheric Chemistry and Physics, 2016, 16, 2575-2596.	1.9	53

#	Article	IF	CITATIONS
73	The Influence of Molecular Structure and Aerosol Phase on the Heterogeneous Oxidation of Normal and Branched Alkanes by OH. Journal of Physical Chemistry A, 2013, 117, 3990-4000.	1.1	52
74	Vapor–Wall Deposition in Chambers: Theoretical Considerations. Environmental Science & Technology, 2014, 48, 10251-10258.	4.6	52
75	Local Hydration Environments of Amino Acids and Dipeptides Studied by X-ray Spectroscopy of Liquid Microjets. Journal of Physical Chemistry B, 2005, 109, 21640-21646.	1.2	51
76	lsotope Fractionation of Water during Evaporation without Condensation. Journal of Physical Chemistry B, 2005, 109, 24391-24400.	1.2	49
77	Characterization of black carbonâ€containing particles from soot particle aerosol mass spectrometer measurements on the R/V <i>Atlantis</i> during CalNex 2010. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2575-2593.	1.2	47
78	Expiratory aerosol particle escape from surgical masks due to imperfect sealing. Scientific Reports, 2021, 11, 12110.	1.6	47
79	Application of the Statistical Oxidation Model (SOM) to Secondary Organic Aerosol formation from photooxidation of C ₁₂ alkanes. Atmospheric Chemistry and Physics, 2013, 13, 1591-1606.	1.9	45
80	Black carbon emissions from in-use ships: a California regional assessment. Atmospheric Chemistry and Physics, 2014, 14, 1881-1896.	1.9	45
81	Observational assessment of the role of nocturnal residual-layer chemistry in determining daytime surface particulate nitrateÂconcentrations. Atmospheric Chemistry and Physics, 2017, 17, 14747-14770.	1.9	45
82	The Electronic Structure of the Hydrated Proton:  A Comparative X-ray Absorption Study of Aqueous HCl and NaCl Solutions. Journal of Physical Chemistry B, 2006, 110, 1166-1171.	1.2	44
83	Heating-Induced Evaporation of Nine Different Secondary Organic Aerosol Types. Environmental Science & Technology, 2015, 49, 12242-12252.	4.6	44
84	Organic PM Emissions from Vehicles: Composition, O/C Ratio, and Dependence on PM Concentration. Aerosol Science and Technology, 2015, 49, 86-97.	1.5	44
85	Airâ€Sea exchange of biogenic volatile organic compounds and the impact on aerosol particle size distributions. Geophysical Research Letters, 2017, 44, 3887-3896.	1.5	42
86	Strong evidence of surface tension reduction in microscopic aqueous droplets. Geophysical Research Letters, 2012, 39, .	1.5	41
87	Influence of Emissions and Aqueous Processing on Particles Containing Black Carbon in a Polluted Urban Environment: Insights From a Soot Particleâ€Aerosol Mass Spectrometer. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6648-6666.	1.2	41
88	Biomass-burning-derived particles from a wide variety of fuels – Part 2: Effects of photochemical aging on particle optical and chemical properties. Atmospheric Chemistry and Physics, 2020, 20, 8511-8532.	1.9	41
89	Temperature and Composition Dependence of Sea Spray Aerosol Production. Geophysical Research Letters, 2018, 45, 7218-7225.	1.5	40
90	Secondary Marine Aerosol Plays a Dominant Role over Primary Sea Spray Aerosol in Cloud Formation. ACS Central Science, 2020, 6, 2259-2266.	5.3	40

#	Article	IF	CITATIONS
91	Wintertime waterâ€soluble aerosol composition and particle water content in Fresno, California. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3155-3170.	1.2	39
92	Real-Time Emission Factor Measurements of Isocyanic Acid from Light Duty Gasoline Vehicles. Environmental Science & Technology, 2014, 48, 11405-11412.	4.6	38
93	Chamber-based insights into the factors controlling epoxydiol (IEPOX) secondary organic aerosol (SOA) yield, composition, and volatility. Atmospheric Chemistry and Physics, 2019, 19, 11253-11265.	1.9	38
94	Real-Time Black Carbon Emission Factor Measurements from Light Duty Vehicles. Environmental Science & Technology, 2013, 47, 13104-13112.	4.6	36
95	Biological Impacts on Carbon Speciation and Morphology of Sea Spray Aerosol. ACS Earth and Space Chemistry, 2017, 1, 551-561.	1.2	36
96	Influence of relative humidity on the heterogeneous oxidation of secondary organic aerosol. Atmospheric Chemistry and Physics, 2018, 18, 14585-14608.	1.9	36
97	Response to Comment on "Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon". Science, 2013, 339, 393-393.	6.0	35
98	Hygroscopic growth of submicron and supermicron aerosols in the marine boundary layer. Journal of Geophysical Research D: Atmospheres, 2014, 119, 8384-8399.	1.2	35
99	Measurement and modeling of the multiwavelength optical properties of uncoated flame-generated soot. Atmospheric Chemistry and Physics, 2018, 18, 12141-12159.	1.9	35
100	Multi-generational oxidation model to simulate secondary organic aerosol in a 3-D air quality model. Geoscientific Model Development, 2015, 8, 2553-2567.	1.3	34
101	Role of Organic Coatings in Regulating N ₂ O ₅ Reactive Uptake to Sea Spray Aerosol. Journal of Physical Chemistry A, 2015, 119, 11683-11692.	1.1	34
102	Revisiting the total ion yield x-ray absorption spectra of liquid water microjets. Journal of Physics Condensed Matter, 2008, 20, 205105.	0.7	33
103	Determination of the evaporation coefficient of D ₂ O. Atmospheric Chemistry and Physics, 2008, 8, 6699-6706.	1.9	33
104	A computational investigation of the electron affinity of CO3 and the thermodynamic feasibility of CO3-(H2O)n+ROOH reactions. Physical Chemistry Chemical Physics, 2001, 3, 2986-2994.	1.3	32
105	Linking variations in sea spray aerosol particle hygroscopicity to composition during two microcosm experiments. Atmospheric Chemistry and Physics, 2016, 16, 9003-9018.	1.9	31
106	Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – PartÂ1: Assessing the influence of constrained multi-generational ageing. Atmospheric Chemistry and Physics, 2016, 16, 2309-2322.	1.9	31
107	Interpreting the H/D Isotope Fractionation of Liquid Water during Evaporation without Condensation. Journal of Physical Chemistry C, 2007, 111, 7011-7020.	1.5	30
108	Formation of secondary organic aerosol coating on black carbon particles near vehicular emissions. Atmospheric Chemistry and Physics, 2017, 17, 15055-15067.	1.9	30

#	Article	IF	CITATIONS
109	Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 3: Assessing the influence of semi-volatile and intermediate-volatility organic compounds and NO _{<i>x</i>} . Atmospheric Chemistry and Physics, 2019, 19, 4561-4594.	1.9	29
110	Organic Enrichment, Physical Phase State, and Surface Tension Depression of Nascent Core–Shell Sea Spray Aerosols during Two Phytoplankton Blooms. ACS Earth and Space Chemistry, 2020, 4, 650-660.	1.2	29
111	Chemically Resolved Particle Fluxes Over Tropical and Temperate Forests. Aerosol Science and Technology, 2013, 47, 818-830.	1.5	27
112	Long-term particulate matter modeling for health effect studies in California – Part 2: Concentrations and sources of ultrafine organic aerosols. Atmospheric Chemistry and Physics, 2017, 17, 5379-5391.	1.9	26
113	Characterizing the performance of a do-it-yourself (DIY) box fan air filter. Aerosol Science and Technology, 2022, 56, 564-572.	1.5	26
114	A statistical description of the evolution of cloud condensation nuclei activity during the heterogeneous oxidation of squalane and bis(2-ethylhexyl) sebacate aerosol by hydroxyl radicals. Physical Chemistry Chemical Physics, 2013, 15, 9679.	1.3	25
115	The influences of mass loading and rapid dilution of secondary organic aerosol on particle volatility. Atmospheric Chemistry and Physics, 2015, 15, 9327-9343.	1.9	25
116	Biogenic and anthropogenic sources of aerosols at the High Arctic site Villum Research Station. Atmospheric Chemistry and Physics, 2019, 19, 10239-10256.	1.9	25
117	Aerosol optical hygroscopicity measurements during the 2010 CARES campaign. Atmospheric Chemistry and Physics, 2015, 15, 4045-4061.	1.9	24
118	OH-Initiated Heterogeneous Oxidation of Internally-Mixed Squalane and Secondary Organic Aerosol. Environmental Science & Technology, 2014, 48, 3196-3202.	4.6	23
119	Organic Aerosol Particle Chemical Properties Associated With Residential Burning and Fog in Wintertime San Joaquin Valley (Fresno) and With Vehicle and Firework Emissions in Summertime South Coast Air Basin (Fontana). Journal of Geophysical Research D: Atmospheres, 2018, 123, 10,707.	1.2	22
120	Particle Size Distribution Dynamics Can Help Constrain the Phase State of Secondary Organic Aerosol. Environmental Science & Technology, 2021, 55, 1466-1476.	4.6	22
121	Computational and experimental studies of chemical ionization mass spectrometric detection techniques for atmospherically relevant peroxides. International Journal of Mass Spectrometry, 2000, 197, 219-235.	0.7	21
122	Volatility of Primary Organic Aerosol Emitted from Light Duty Gasoline Vehicles. Environmental Science & Technology, 2015, 49, 1569-1577.	4.6	21
123	Investigating Carbonaceous Aerosol and Its Absorption Properties From Fires in the Western United States (WEâ€CAN) and Southern Africa (ORACLES and CLARIFY). Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034984.	1.2	21
124	Modeling the formation and composition of secondary organic aerosol from diesel exhaust using parameterized and semi-explicit chemistry and thermodynamic models. Atmospheric Chemistry and Physics, 2018, 18, 13813-13838.	1.9	20
125	Comparing black and brown carbon absorption from AERONET and surface measurements at wintertime Fresno. Atmospheric Environment, 2019, 199, 164-176.	1.9	20
126	On the primary emission of formic acid from light duty gasoline vehicles and ocean-going vessels. Atmospheric Environment, 2014, 98, 426-433.	1.9	15

#	Article	IF	CITATIONS
127	Photopolarimetric Sensitivity to Black Carbon Content of Wildfire Smoke: Results From the 2016 ImPACTâ€PM Field Campaign. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5376-5396.	1.2	15
128	Influences of Primary Emission and Secondary Coating Formation on the Particle Diversity and Mixing State of Black Carbon Particles. Environmental Science & Technology, 2019, 53, 9429-9438.	4.6	15
129	Modeling Ammonia and Its Uptake by Secondary Organic Aerosol Over China. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034109.	1.2	15
130	Coupled Air Quality and Boundary-Layer Meteorology in Western U.S. Basins during Winter: Design and Rationale for a Comprehensive Study. Bulletin of the American Meteorological Society, 2021, 102, E2012-E2033.	1.7	14
131	A miniature Marine Aerosol Reference Tank (miniMART) as a compact breaking wave analogue. Atmospheric Measurement Techniques, 2016, 9, 4257-4267.	1.2	12
132	Size-Dependent Morphology, Composition, Phase State, and Water Uptake of Nascent Submicrometer Sea Spray Aerosols during a Phytoplankton Bloom. ACS Earth and Space Chemistry, 2022, 6, 116-130.	1.2	12
133	Source characterization from ambient measurements of aerosol optical properties. Geophysical Research Letters, 2009, 36, .	1.5	11
134	The Sea Spray Chemistry and Particle Evolution study (SeaSCAPE): overview and experimental methods. Environmental Sciences: Processes and Impacts, 2022, 24, 290-315.	1.7	11
135	Marine gas-phase sulfur emissions during an induced phytoplankton bloom. Atmospheric Chemistry and Physics, 2022, 22, 1601-1613.	1.9	11
136	Process-Level Modeling Can Simultaneously Explain Secondary Organic Aerosol Evolution in Chambers and Flow Reactors. Environmental Science & Technology, 2022, 56, 6262-6273.	4.6	11
137	Larger Submicron Particles for Emissions With Residential Burning in Wintertime San Joaquin Valley (Fresno) than for Vehicle Combustion in Summertime South Coast Air Basin (Fontana). Journal of Geophysical Research D: Atmospheres, 2018, 123, 10,526.	1.2	10
138	A robust clustering algorithm for analysis of composition-dependent organic aerosol thermal desorption measurements. Atmospheric Chemistry and Physics, 2020, 20, 2489-2512.	1.9	9
139	A highly efficient cloth facemask design. Aerosol Science and Technology, 2022, 56, 12-28.	1.5	9
140	Atmospheric Benzothiazoles in a Coastal Marine Environment. Environmental Science & Technology, 2021, 55, 15705-15714.	4.6	9
141	Modeling the Effects of Dimerization and Bulk Diffusion on the Evaporative Behavior of Secondary Organic Aerosol Formed from α-Pinene and 1,3,5-Trimethylbenzene. ACS Earth and Space Chemistry, 2020, 4, 1931-1946.	1.2	7
142	Product Identification and Kinetics of Reactions of HCl with HNO3/H2SO4/H2O Solutions. Journal of Physical Chemistry A, 2000, 104, 4449-4457.	1.1	6
143	Reactive Uptake of Hydroperoxymethyl Thioformate to Sodium Chloride and Sodium Iodide Aerosol Particles. Journal of Physical Chemistry A, 2022, 126, 4476-4481.	1.1	6
144	Optical cavity resonances in water micro-droplets: Implications for shortwave cloud forcing. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	5

#	Article	IF	CITATIONS
145	Using spectral methods to obtain particle size information from optical data: applications to measurements from CARES 2010. Atmospheric Chemistry and Physics, 2018, 18, 5499-5514.	1.9	5
146	PM2.5 composition and sources in the San Joaquin Valley of California: A long-term study using ToF-ACSM with the capture vaporizer. Environmental Pollution, 2022, 292, 118254.	3.7	5
147	Parameterized Yields of Semivolatile Products from Isoprene Oxidation under Different NO _{<i>x</i>} Levels: Impacts of Chemical Aging and Wall-Loss of Reactive Gases. Environmental Science & Technology, 2018, 52, 9225-9234.	4.6	3
148	A computationally efficient model to represent the chemistry, thermodynamics, and microphysics of secondary organic aerosols (simpleSOM): model development and application to α-pinene SOA. Environmental Science Atmospheres, 2021, 1, 372-394.	0.9	3
149	Performance of Valved Respirators to Reduce Emission of Respiratory Particles Generated by Speaking. Environmental Science and Technology Letters, 2022, 9, 557-560.	3.9	3
150	Thank You to Our 2020 Peer Reviewers. Geophysical Research Letters, 2021, 48, e2021GL093126.	1.5	0
151	Effect of voicing and articulation manner on aerosol particle emission during human speech. , 2020, 15, e0227699.		0
152	Effect of voicing and articulation manner on aerosol particle emission during human speech. , 2020, 15, e0227699.		0
153	Effect of voicing and articulation manner on aerosol particle emission during human speech. , 2020, 15, e0227699.		0
154	Effect of voicing and articulation manner on aerosol particle emission during human speech. , 2020, 15, e0227699.		0
155	Thank You to Our 2021 Peer Reviewers. Geophysical Research Letters, 2022, 49, .	1.5	0