Yanguo Teng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4084876/publications.pdf

Version: 2024-02-01

		159525	123376
79	3,998	30	61
papers	citations	h-index	g-index
79	79	79	3925
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 2015, 512-513, 143-153.	3.9	1,026
2	Characterization of antibiotics in a large-scale river system of China: Occurrence pattern, spatiotemporal distribution and environmental risks. Science of the Total Environment, 2018, 618, 409-418.	3.9	226
3	Groundwater nitrate pollution and human health risk assessment by using HHRA model in an agricultural area, NE China. Ecotoxicology and Environmental Safety, 2017, 137, 130-142.	2.9	209
4	Source apportionment and health risk assessment of trace metals in surface soils of Beijing metropolitan, China. Chemosphere, 2016, 144, 1002-1011.	4.2	195
5	Heterogeneous activation of persulfate by carbon nanofiber supported Fe3O4@carbon composites for efficient ibuprofen degradation. Journal of Hazardous Materials, 2021, 401, 123428.	6.5	124
6	Characterization and source apportionment of heavy metals in the sediments of Lake Tai (China) and its surrounding soils. Science of the Total Environment, 2019, 694, 133819.	3.9	122
7	Source apportionment of trace metals in river sediments: A comparison of three methods. Environmental Pollution, 2016, 211, 28-37.	3.7	97
8	Contamination characteristics, ecological risk and source identification of trace metals in sediments of the Le'an River (China). Ecotoxicology and Environmental Safety, 2016, 125, 85-92.	2.9	90
9	Multimedia fate modeling and risk assessment of antibiotics in a water-scarce megacity. Journal of Hazardous Materials, 2018, 348, 75-83.	6.5	90
10	Source apportionment and source-oriented risk assessment of heavy metals in the sediments of an urban river-lake system. Science of the Total Environment, 2020, 737, 140310.	3.9	88
11	Prevalence, source and risk of antibiotic resistance genes in the sediments of Lake Tai (China) deciphered by metagenomic assembly: A comparison with other global lakes. Environment International, 2019, 127, 267-275.	4.8	84
12	Characterization and source identification of antibiotic resistance genes in the sediments of an interconnected river-lake system. Environment International, 2020, 137, 105538.	4.8	80
13	Soil Heavy Metal Pollution and Risk Assessment in Shenyang Industrial District, Northeast China. PLoS ONE, 2015, 10, e0127736.	1.1	79
14	Environmental geochemistry and ecological risk of vanadium pollution in Panzhihua mining and smelting area, Sichuan, China. Diqiu Huaxue, 2006, 25, 379-385.	0.5	73
15	A metagenomic analysis framework for characterization of antibiotic resistomes in river environment: Application to an urban river in Beijing. Environmental Pollution, 2019, 245, 398-407.	3.7	68
16	Carbon nanofibers supported Co/Ag bimetallic nanoparticles for heterogeneous activation of peroxymonosulfate and efficient oxidation of amoxicillin. Journal of Hazardous Materials, 2020, 400, 123290.	6.5	58
17	Geochemical baseline of trace elements in the sediment in Dexing area, South China. Environmental Geology, 2009, 57, 1649-1660.	1.2	55
18	Screening and assessment of solidification/stabilization amendments suitable for soils of lead-acid battery contaminated site. Journal of Hazardous Materials, 2015, 288, 140-146.	6.5	55

#	Article	IF	Citations
19	Source identification of antibiotic resistance genes in a peri-urban river using novel crAssphage marker genes and metagenomic signatures. Water Research, 2019, 167, 115098.	5.3	54
20	Environmental risk characterization and ecological process determination of bacterial antibiotic resistome in lake sediments. Environment International, 2021, 147, 106345.	4.8	51
21	Groundwater pollution and risk assessment based on source apportionment in a typical cold agricultural region in Northeastern China. Science of the Total Environment, 2019, 696, 133972.	3.9	48
22	Effects on microbiomes and resistomes and the source-specific ecological risks of heavy metals in the sediments of an urban river. Journal of Hazardous Materials, 2021, 409, 124472.	6.5	47
23	Ecotoxicological risk assessment and source apportionment of antibiotics in the waters and sediments of a peri-urban river. Science of the Total Environment, 2020, 731, 139128.	3.9	46
24	Source apportionment of heavy metals in sediments and soils in an interconnected river-soil system based on a composite fingerprint screening approach. Journal of Hazardous Materials, 2021, 411, 125125.	6.5	46
25	Characterization of antibiotic resistance genes in the sediments of an urban river revealed by comparative metagenomics analysis. Science of the Total Environment, 2019, 653, 1513-1521.	3.9	45
26	Characterization and source-tracking of antibiotic resistomes in the sediments of a peri-urban river. Science of the Total Environment, 2019, 679, 88-96.	3.9	41
27	Activation of manganese dioxide with bisulfite for enhanced abiotic degradation of typical organophosphorus pesticides: Kinetics and transformation pathway. Chemosphere, 2019, 226, 858-864.	4.2	41
28	Spatiotemporal evolution of groundwater nitrate nitrogen levels and potential human health risks in the Songnen Plain, Northeast China. Ecotoxicology and Environmental Safety, 2021, 208, 111524.	2.9	40
29	Water supply safety of riverbank filtration wells under the impact of surface water-groundwater interaction: Evidence from long-term field pumping tests. Science of the Total Environment, 2020, 711, 135141.	3.9	38
30	The spatioâ€ŧemporal variability of annual precipitation and its local impact factors during 1724–2010 in Beijing, China. Hydrological Processes, 2014, 28, 2192-2201.	1.1	34
31	Source apportionment of pollution in groundwater source area using factor analysis and positive matrix factorization methods. Human and Ecological Risk Assessment (HERA), 2017, 23, 1417-1436.	1.7	32
32	Application of percarbonate and peroxymonocarbonate in decontamination technologies. Journal of Environmental Sciences, 2021, 105, 100-115.	3.2	30
33	Contamination characteristics and source apportionment of trace metals in soils around Miyun Reservoir. Environmental Science and Pollution Research, 2016, 23, 15331-15342.	2.7	29
34	Developing an integrated framework for source apportionment and source-specific health risk assessment of PAHs in soils: Application to a typical cold region in China. Journal of Hazardous Materials, 2021, 415, 125730.	6.5	29
35	Elevated Fe and Mn Concentrations in Groundwater in the Songnen Plain, Northeast China, and the Factors and Mechanisms Involved. Agronomy, 2021, 11, 2392.	1.3	27
36	Iron Isotope Compositions of Natural River and Lake Samples in the Karst Area, Guizhou Province, Southwest China. Acta Geologica Sinica, 2011, 85, 712-722.	0.8	26

#	Article	IF	CITATIONS
37	The impact of well drawdowns on the mixing process of river water and groundwater and water quality in a riverside well field, Northeast China. Hydrological Processes, 2019, 33, 945-961.	1.1	26
38	Can bioenergy carbon capture and storage aggravate global water crisis?. Science of the Total Environment, 2020, 714, 136856.	3.9	22
39	Influence of surface-water irrigation on the distribution of organophosphorus pesticides in soil-water systems, Jianghan Plain, central China. Journal of Environmental Management, 2021, 281, 111874.	3.8	21
40	Interactions between anthropogenic pollutants (biodegradable organic nitrogen and ammonia) and the primary hydrogeochemical component Mn in groundwater: Evidence from three polluted sites. Science of the Total Environment, 2022, 808, 152162.	3.9	21
41	Environmentally geochemical characteristics of vanadium in the topsoil in the Panzhihua mining area, Sichuan Province, China. Diqiu Huaxue, 2009, 28, 105-111.	0.5	20
42	Entropy weight method coupled with an improved DRASTIC model to evaluate the special vulnerability of groundwater in Songnen Plain, Northeastern China. Hydrology Research, 2020, 51, 1184-1200.	1.1	19
43	Polycyclic aromatic hydrocarbons (PAHs) in the environment of Beijing, China: Levels, distribution, trends and sources. Human and Ecological Risk Assessment (HERA), 2018, 24, 137-157.	1.7	18
44	Spatiotemporal distribution and risk assessment of organophosphorus pesticides in surface water and groundwater on the North China Plain, China. Environmental Research, 2022, 204, 112310.	3.7	18
45	Influencing factors and mechanism by which DOM in groundwater releases Fe from sediment. Chemosphere, 2022, 300, 134524.	4.2	18
46	Trend, seasonality and relationships of aquatic environmental quality indicators and implications: An experience from Songhua River, NE China. Ecological Engineering, 2020, 145, 105706.	1.6	17
47	Distribution, Genesis, and Human Health Risks of Groundwater Heavy Metals Impacted by the Typical Setting of Songnen Plain of NE China. International Journal of Environmental Research and Public Health, 2022, 19, 3571.	1.2	17
48	Reconstruction and Optimization of Tritium Time Series in Precipitation of Beijing, China. Radiocarbon, 2013, 55, 67-79.	0.8	16
49	Distribution, origin and key influencing factors of fluoride groundwater in the coastal area, NE China. Human and Ecological Risk Assessment (HERA), 2019, 25, 104-119.	1.7	16
50	A GIS-based LVF model for semiquantitative assessment of groundwater pollution risk: A case study in Shenyang, NE China. Human and Ecological Risk Assessment (HERA), 2017, 23, 276-298.	1.7	15
51	In-situ study of migration and transformation of nitrogen in groundwater based on continuous observations at a contaminated desert site. Journal of Contaminant Hydrology, 2018, 211, 39-48.	1.6	15
52	Anthropogenic Organic Pollutants in Groundwater Increase Releases of Fe and Mn from Aquifer Sediments: Impacts of Pollution Degree, Mineral Content, and pH. Water (Switzerland), 2021, 13, 1920.	1.2	15
53	Vertical distribution characteristics and interactions of polycyclic aromatic compounds and bacterial communities in contaminated soil in oil storage tank areas. Chemosphere, 2022, 301, 134695.	4.2	15
54	Development of Relative Risk Model for Regional Groundwater Risk Assessment: A Case Study in the Lower Liaohe River Plain, China. PLoS ONE, 2015, 10, e0128249.	1.1	14

#	Article	IF	Citations
55	Integrating Metagenomic and Bayesian Analyses to Evaluate the Performance and Confidence of CrAssphage as an Indicator for Tracking Human Sewage Contamination in China. Environmental Science & Echnology, 2021, 55, 4992-5000.	4.6	13
56	Sorption and retardation of strontium in fine-particle media from a VLLW disposal site. Journal of Radioanalytical and Nuclear Chemistry, 2009, 279, 893-899.	0.7	11
57	Suitability for developing riverside groundwater sources along Songhua River, Northeast China. Human and Ecological Risk Assessment (HERA), 2018, 24, 2088-2100.	1.7	11
58	Further Discussion on the Influence Radius of a Pumping Well: A Parameter with Little Scientific and Practical Significance That Can Easily Be Misleading. Water (Switzerland), 2021, 13, 2050.	1.2	11
59	Assessing the impact of different salinities on the desorption of Cd, Cu and Zn in soils with combined pollution. Science of the Total Environment, 2022, 836, 155725.	3.9	11
60	The Combined Effect of Cu, Zn and Pb on Enzyme Activities in Soil from the Vicinity of a Wellhead Protection Area. Soil and Sediment Contamination, 2016, 25, 279-295.	1.1	10
61	A SEEC Model Based on the DPSIR Framework Approach for Watershed Ecological Security Risk Assessment: A Case Study in Northwest China. Water (Switzerland), 2022, 14, 106.	1.2	10
62	Simulation of Trinitrogen Migration and Transformation in the Unsaturated Zone at a Desert Contaminant Site (NW China) Using HYDRUS-2D. Water (Switzerland), 2018, 10, 1363.	1.2	9
63	An integrated multidisciplinary-based framework for characterizing environmental risks of heavy metals and their effects on antibiotic resistomes in agricultural soils. Journal of Hazardous Materials, 2022, 426, 128113.	6.5	9
64	Pollution risk assessment based on source apportionment in a groundwater resource area, NE China. Human and Ecological Risk Assessment (HERA), 2018, 24, 1197-1215.	1.7	8
65	Sorption of strontium and fractal scaling of the heterogeneous media in a candidate VLLW disposal site. Journal of Radioanalytical and Nuclear Chemistry, 2010, 283, 319-328.	0.7	7
66	Design and Optimization of a Fully-Penetrating Riverbank Filtration Well Scheme at a Fully-Penetrating River Based on Analytical Methods. Water (Switzerland), 2019, 11, 418.	1.2	7
67	Biogeochemistry of Iron Enrichment in Groundwater: An Indicator of Environmental Pollution and Its Management. Sustainability, 2022, 14, 7059.	1.6	7
68	A HIVE model for regional integrated environmental risk assessment: A case study in China. Human and Ecological Risk Assessment (HERA), 2016, 22, 1002-1028.	1.7	6
69	Influences of dissolved humic acid on Zn bioavailability and its consequences for thyroid toxicity. Ecotoxicology and Environmental Safety, 2018, 166, 132-137.	2.9	6
70	Evaluation and characterization of anti-estrogenic and anti-androgenic activities in soil samples along the Second Songhua River, China. Environmental Monitoring and Assessment, 2015, 187, 724.	1.3	5
71	Reconstruction and Optimization of Tritium Time Series in Precipitation of Beijing, China. Radiocarbon, 2013, 55, 67-79.	0.8	4
72	An assessment of the presence and health risks of endocrine-disrupting chemicals in the drinking water treatment plant of Wu Chang, China. Human and Ecological Risk Assessment (HERA), 2018, 24, 1127-1137.	1.7	3

YANGUO TENG

#	Article	lF	CITATIONS
73	Evaluation and characterization of thyroid-disrupting activities in soil samples along the Second Songhua River, China. Ecotoxicology and Environmental Safety, 2016, 133, 475-480.	2.9	2
74	Factors influencing U(VI) adsorption onto soil from a candidate very low level radioactive waste disposal site in China. Nuclear Technology and Radiation Protection, 2016, 31, 268-276.	0.3	2
75	Groundwater Quality Assessment and Its Influences on the Surface Water in Quanzhou Coastal Area. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0
76	Assessment of the Groundwater Renewability in Beijing Plain Area. , 2011, , .		0
77	Notice of Retraction: Hydrochemical and Isotopic Characteristics of Spring Water in Beijing and Their Environmental Implications. , 2011, , .		0
78	Comparison and Selection of the Method for Reconstructing Trititum Concentration Series in Precipitation. , 2012, , .		0
79	Characteristics of Environmental Incidents and Environmental Risk Management in China. , 2012, , .		0