Ana Loncaric Bozic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/408437/publications.pdf

Version: 2024-02-01

71 papers

2,699 citations

236833 25 h-index 189801 50 g-index

74 all docs

74 docs citations

times ranked

74

3126 citing authors

#	Article	IF	Citations
1	Structural features promoting adsorption of contaminants of emerging concern onto TiO2 P25: experimental and computational approaches. Environmental Science and Pollution Research, 2022, 29, 87628-87644.	2.7	2
2	Influence of Photo-Deposited Pt and Pd onto Chromium Doped TiO2 Nanotubes in Photo-Electrochemical Water Splitting for Hydrogen Generation. Catalysts, 2021, 11, 212.	1.6	9
3	Environmental aspects of UV-C-based processes for the treatment of oxytetracycline in water. Environmental Pollution, 2021, 277, 116797.	3.7	16
4	Solar Light Activation of Persulfate by TiO ₂ /Fe ₂ O ₃ Layered Composite Films for Degradation of Amoxicillin: Degradation Mechanism, Matrix Effects, and Toxicity Assessments. Advanced Sustainable Systems, 2021, 5, 2100119.	2.7	17
5	Tailored BiVO4 for enhanced visible-light photocatalytic performance. Journal of Environmental Chemical Engineering, 2021, 9, 106025.	3.3	22
6	In-situ high temperature XRD study on thermally induced phase changes of BiVO4: The formation of an iso-type heterojunction. Materials Letters, 2021, 305, 130816.	1.3	4
7	Degradation of polar and non-polar pharmaceutical pollutants in water by solar assisted photocatalysis using hydrothermal TiO2-SnS2. Chemical Engineering Journal, 2020, 382, 122826.	6.6	37
8	Combined toxicities of binary mixtures of alachlor, chlorfenvinphos, diuron and isoproturon. Chemosphere, 2020, 240, 124973.	4.2	17
9	Structural features of contaminants of emerging concern behind empirical parameters of mechanistic models describing their photooxidative degradation. Journal of Water Process Engineering, 2020, 33, 101053.	2.6	7
10	Recent Achievements in Development of TiO2-Based Composite Photocatalytic Materials for Solar Driven Water Purification and Water Splitting. Materials, 2020, 13, 1338.	1.3	76
11	Solar-active photocatalysts based on TiO2 and conductive polymer PEDOT for the removal of bisphenol A. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 396, 112546.	2.0	19
12	One-Pot Synthesis of Sulfur-Doped TiO2/Reduced Graphene Oxide Composite (S-TiO2/rGO) with Improved Photocatalytic Activity for the Removal of Diclofenac from Water. Materials, 2020, 13, 1621.	1.3	23
13	Toxicity of pharmaceuticals in binary mixtures: Assessment by additive and non-additive toxicity models. Ecotoxicology and Environmental Safety, 2019, 185, 109696.	2.9	21
14	Key structural features promoting radical driven degradation of emerging contaminants in water. Environment International, 2019, 124, 38-48.	4.8	24
15	Modeling of Photooxidative Degradation of Aromatics in Water Matrix: A Quantitative Structureâ^Property Relationship Approach. ACS Symposium Series, 2019, , 257-292.	0.5	O
16	Building Soft Sensors using Artificial Intelligence: Use Case on Daily Solar Radiation. , 2019, , .		1
17	Toxicity of aromatic pollutants and photooxidative intermediates in water: A QSAR study. Ecotoxicology and Environmental Safety, 2019, 169, 918-927.	2.9	28
18	Reactivation and reuse of TiO2-SnS2 composite catalyst for solar-driven water treatment. Environmental Science and Pollution Research, 2018, 25, 2538-2551.	2.7	8

#	Article	IF	Citations
19	Influence of process parameters on the effectiveness of photooxidative treatment of pharmaceuticals. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2018, 53, 338-351.	0.9	15
20	8. Water and wastewater treatment engineering. , 2018, , 241-276.		0
21	Influence of process parameters on the effectiveness of photooxidative treatment of emerging contaminants in water. AIP Conference Proceedings, 2018, , .	0.3	O
22	AOP degradation of emerging contaminants in water: Prediction of second order kinetics by QSPR modeling. AIP Conference Proceedings, $2018, \ldots$	0.3	0
23	Elucidating the Photocatalytic Behavior of TiO2-SnS2 Composites Based on Their Energy Band Structure. Materials, 2018, 11, 1041.	1.3	17
24	Solar driven degradation of $17\hat{i}^2$ -estradiol using composite photocatalytic materials and artificial irradiation source: Influence of process and water matrix parameters. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 361, 48-61.	2.0	17
25	Photooxidative Degradation of Pesticides in Water; Response Surface Modeling Approach. Journal of Advanced Oxidation Technologies, 2017, 20, .	0.5	4
26	Prediction of biodegradability of aromatics in water using QSAR modeling. Ecotoxicology and Environmental Safety, 2017, 139, 139-149.	2.9	20
27	TiO2-SnS2 nanocomposites: solar-active photocatalytic materials for water treatment. Environmental Science and Pollution Research, 2017, 24, 19965-19979.	2.7	16
28	Reuse of TiO 2 -based catalyst for solar driven water treatment; thermal and chemical reactivation. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 333, 117-129.	2.0	18
29	UV photolysis of diclofenac in water; kinetics, degradation pathway and environmental aspects. Environmental Science and Pollution Research, 2016, 23, 14908-14917.	2.7	42
30	Solar-driven photocatalytic treatment of diclofenac using immobilized TiO2-based zeolite composites. Environmental Science and Pollution Research, 2016, 23, 17982-17994.	2.7	34
31	Diclofenac removal by simulated solar assisted photocatalysis using TiO2-based zeolite catalyst; mechanisms, pathways and environmental aspects. Chemical Engineering Journal, 2016, 304, 289-302.	6.6	113
32	Comparative analysis of UV-C/H2O2 and UV-A/TiO2 processes for the degradation of diclofenac in water. Reaction Kinetics, Mechanisms and Catalysis, 2016, 118, 451-462.	0.8	15
33	Comparative study on photooxidative treatment of diclofenac: Response surface and mechanistic modeling. Journal of Water Process Engineering, 2016, 10, 78-88.	2.6	18
34	Removal of diclofenac from water by zeolite-assisted advanced oxidation processes. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 321, 238-247.	2.0	38
35	Modeling Photo-oxidative Degradation of Aromatics in Water. Optimization Study Using Response Surface and Structural Relationship Approaches. Industrial & Engineering Chemistry Research, 2015, 54, 5427-5441.	1.8	12
36	Prediction of key structural features responsible for aromaticity of single-benzene ring pollutants and their photooxidative intermediates. Chemical Engineering Journal, 2015, 276, 261-273.	6.6	12

#	Article	IF	Citations
37	Structural Influence on Photooxidative Degradation of Halogenated Phenols. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	13
38	Photooxidative Degradation of Aromatic Carboxylic Acids in Water: Influence of Hydroxyl Substituents. Industrial & Engineering Chemistry Research, 2014, 53, 10590-10598.	1.8	24
39	Modeling of photooxidative degradation of aromatics in water matrix; combination of mechanistic and structural-relationship approach. Chemical Engineering Journal, 2014, 257, 229-241.	6.6	32
40	Structural aspects of the degradation of sulfoaromatics by the UV/H2O2 process. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 293, 1-11.	2.0	20
41	Environmental aspects of photooxidative treatment of phenolic compounds. Journal of Hazardous Materials, 2013, 262, 377-386.	6.5	36
42	Modeling of photodegradation kinetics of aromatic pollutants in water matrix. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 271, 65-76.	2.0	13
43	Environmental aspects on the photodegradation of reactive triazine dyes in aqueous media. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 252, 131-144.	2.0	33
44	Application of Sensitivity and Flux Analyses for the Reduction of Model Predicting the Photooxidative Degradation of an Azo Dye in Aqueous Media. Environmental Modeling and Assessment, 2012, 17, 653-671.	1.2	5
45	Photooxidation of benzene-structured compounds: Influence of substituent type on degradation kinetic and sum water parameters. Water Research, 2012, 46, 3074-3084.	5.3	20
46	Influence of substituent type and position on photooxidation of phenolic compounds: Response surface methodology approach. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 242, 1-12.	2.0	12
47	Treatment of chlorophenols in water matrix by UV/ferrioxalate system: Part I. Key process parameter evaluation by response surface methodology. Desalination, 2011, 279, 258-268.	4.0	17
48	Treatment of chlorophenols in water matrix by UV/ferri-oxalate system: Part II. Degradation mechanisms and ecological parameters evaluation. Desalination, 2011, 280, 208-216.	4.0	18
49	Treatment of simulated industrial wastewater by photo-Fenton process: Part II. The development of mechanistic model. Chemical Engineering Journal, 2011, 173, 280-289.	6.6	38
50	Modeling of iron activated persulfate oxidation treating reactive azo dye in water matrix. Chemical Engineering Journal, 2011, 172, 109-121.	6.6	182
51	Photooxidation processes for an azo dye in aqueous media: Modeling of degradation kinetic and ecological parameters evaluation. Journal of Hazardous Materials, 2011, 185, 1558-1568.	6.5	43
52	Iron-Activated Persulfate Oxidation of an Azo Dye in Model Wastewater: Influence of Iron Activator Type on Process Optimization. Journal of Environmental Engineering, ASCE, 2011, 137, 454-463.	0.7	44
53	Treatment of Chlorophenols by UV-Based Processes: Correlation of Oxidation By-Products, Wastewater Parameters, and Toxicity. Journal of Environmental Engineering, ASCE, 2011, 137, 639-649.	0.7	24
54	Degradation of chlorinated hydrocarbons by UV/H2O2: The application of experimental design and kinetic modeling approach. Chemical Engineering Journal, 2010, 158, 154-166.	6.6	65

#	Article	IF	Citations
55	Heterogeneous Fenton type processes for the degradation of organic dye pollutant in water â€" The application of zeolite assisted AOPs. Desalination, 2010, 257, 22-29.	4.0	154
56	Decolorization and Mineralization of Reactive Dye by UV/Fenton Process. Separation Science and Technology, 2010, 45, 1637-1643.	1.3	14
57	Modeling dye degradation kinetic using dark- and photo-Fenton type processes. Chemical Engineering Journal, 2009, 155, 144-154.	6.6	42
58	Fenton type processes for minimization of organic content in coloured wastewaters. Part II: Combination with zeolites. Dyes and Pigments, 2007, 74, 388-395.	2.0	21
59	Comparative study of UV/TiO2, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution. Journal of Hazardous Materials, 2007, 148, 477-484.	6.5	172
60	Fenton type processes for minimization of organic content in coloured wastewaters: Part I: Processes optimization. Dyes and Pigments, 2007, 74, 380-387.	2.0	78
61	Advanced Oxidation Processes in Azo Dye Wastewater Treatment. Water Environment Research, 2006, 78, 572-579.	1.3	46
62	Minimization of organic pollutant content in aqueous solution by means of AOPs: UV- and ozone-based technologies. Chemical Engineering Journal, 2006, 123, 127-137.	6.6	159
63	Photo-assisted Fenton type processes for the degradation of phenol: A kinetic study. Journal of Hazardous Materials, 2006, 136, 632-644.	6.5	163
64	Advanced oxidation processes in azo dye wastewater treatment. Water Environment Research, 2006, 78, 572-9.	1.3	2
65	Organic synthetic dye degradation by modified pinhole discharge. European Physical Journal D, 2004, 54, C958-C963.	0.4	18
66	Removal of some reactive dyes from synthetic wastewater by combined Al(III) coagulation/carbon adsorption process. Dyes and Pigments, 2004, 62, 291-298.	2.0	327
67	The Removal of Direct Orange 39 by Pulsed Corona Discharge From Model Wastewater. Environmental Technology (United Kingdom), 2004, 25, 791-800.	1.2	16
68	Cleaner production processes in the synthesis of blue anthraquinone reactive dyes. Dyes and Pigments, 1999, 44, 33-40.	2.0	27
69	Low-Toxicity Copper Corrosion Inhibitors. Corrosion, 1998, 54, 713-720.	0.5	93
70	Metallic behaviour in copper-lead murdochite oxide. Materials Research Bulletin, 1993, 28, 741-747.	2.7	5
71	Comparative study on photocatalytic treatment of diclofenac: slurry vs. immobilized processes. , 0, 81, 170-185.		1