Azura Arashid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4083987/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of low industrial-grade seaweed (LIGS) in natural rubber latex foam (NRLF). Journal of Rubber Research (Kuala Lumpur, Malaysia), 2022, 25, 39-50.	0.4	Ο
2	Natural Rubber (NR) Latex Films with Antimicrobial Properties for Stethoscope Diaphragm Covers. Materials, 2022, 15, 3433.	1.3	7
3	Waste Natural Polymers as Potential Fillers for Biodegradable Latex-Based Composites: A Review. Polymers, 2021, 13, 3600.	2.0	11
4	Biodegradable Gloves for Waste Management Post-COVID-19 Outbreak: A Shelf-Life Prediction. ACS Omega, 2020, 5, 30329-30335.	1.6	17
5	The effects of nano-cellulose filler on tensile and thermal properties of natural rubber latex films. AIP Conference Proceedings, 2020, , .	0.3	5
6	Shelf life prediction of sago starch filled natural rubber latex gloves by using average activation energy approach. AIP Conference Proceedings, 2020, , .	0.3	1
7	Utilization of natural rubber latex as raw materials for rubber shoe outsole. AIP Conference Proceedings, 2020, , .	0.3	2
8	Chitosan Epoxidized Natural Rubber Biocomposites for Sorption and Biodegradability Studies. ACS Omega, 2020, 5, 28760-28766.	1.6	6
9	Effect of carbon black loading on mechanical, conductivity and ageing properties of Natural Rubber composites. Materials Today: Proceedings, 2019, 17, 1056-1063.	0.9	14
10	Ultrafine calcium carbonate-filled natural rubber latex film: mechanical and post-processing properties. Iranian Polymer Journal (English Edition), 2019, 28, 849-858.	1.3	5
11	The Influence of Sago Starch Dispersion on Mechanical Properties of Biodegradable Natural Rubber Latex Films. Materials Today: Proceedings, 2019, 17, 1040-1046.	0.9	8
12	Ecofriendly latex films from cassava starch-filled radiation pre-vulcanized natural rubber latex. Radiation Effects and Defects in Solids, 2019, 174, 741-751.	0.4	6
13	Effect of potassium oleate (PO) on the colloid stability of high ammonia (HA) natural rubber latex (NRL) after the freezing and thawing processes. Journal of Rubber Research (Kuala Lumpur, Malaysia), 2019, 22, 13-21.	0.4	8
14	Effect of Latex Compound Dwell Time for the Production of Prototyped Biodegradable Natural Rubber Latex Gloves. IOP Conference Series: Materials Science and Engineering, 2019, 548, 012017.	0.3	8
15	The influence of surface structure of low industrial grade seaweed and semiâ€refined carrageenan on mechanical and physical properties of natural rubber latex composites. Journal of Vinyl and Additive Technology, 2019, 25, 278-286.	1.8	4
16	MODIFICATION AND APPLICATION OF STARCH IN NATURAL RUBBER LATEX COMPOSITES. Rubber Chemistry and Technology, 2018, 91, 184-204.	0.6	14
17	CHAPTER 9. Recycling of Latex Waste and Latex Products. RSC Green Chemistry, 2018, , 233-258.	0.0	1

Ethylene vinyl acetate as compatibilizer on cure characteristics and mechanical properties of (natural) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 18 2017, 23, 135-141.

Azura Arashid

#	Article	IF	CITATIONS
19	Effect of dispersion preparation technique of calcium carbonate (CaCO3) fillers on mechanical properties of natural rubber (NR) latex films. AIP Conference Proceedings, 2017, , .	0.3	2
20	Hardness and swelling behaviour of epoxidized natural rubber/recycled acrylonitrile-butadiene rubber (ENR 50/NBRr) blends. AIP Conference Proceedings, 2017, , .	0.3	2
21	Effect of combination ultrasonic and ball milling techniques of commercial fillers dispersion on mechanical properties of natural rubber (NR) latex films. AIP Conference Proceedings, 2017, , .	0.3	5
22	Preliminary study of semi-refined carrageenan (SRC) as secondary gelling agent in natural rubber (NR) latex foam. AIP Conference Proceedings, 2017, , .	0.3	1
23	Influence of banana stem powder on knotty tear behaviour of prevulcanised natural rubber latex composite films. Plastics, Rubber and Composites, 2015, 44, 265-272.	0.9	4
24	Comparison properties of natural rubber/virgin acrylonitrile–butadiene rubber and natural rubber/recycled acrylonitrile–butadiene rubber blends. Iranian Polymer Journal (English Edition), 2015, 24, 185-195.	1.3	13
25	The physical and degradation properties of starch-graft-acrylonitrile/carboxylated nitrile butadiene rubber latex films. Carbohydrate Polymers, 2015, 128, 1-10.	5.1	17
26	Validation of an Electronic Sensor Network (ESN) Control Chamber for Monitoring the Soil Decomposition Process of Sago Starch-filled Natural Rubber Latex Films. Journal of Testing and Evaluation, 2015, 43, 20130277.	0.4	3
27	Properties of natural rubber/recycled ethylene–propylene–diene rubber blends prepared using various vulcanizing systems. Iranian Polymer Journal (English Edition), 2014, 23, 37-45.	1.3	17
28	Effect of filler surface treatment on the properties of recycled high-density polyethylene/(natural) Tj ETQq0 0 0 rg	gBT /Overl 1.8	ock 10 Tf 50
29	Comparison of mechanical, morphological and swelling properties of WNRL/PS and NRv/PS blends. Journal of Elastomers and Plastics, 2013, 45, 523-535.	0.7	0
30	Blending of Natural Rubber/Recycled Ethylene-Propylene-Diene Monomer: Cure Behaviors and Mechanical Properties. Polymer-Plastics Technology and Engineering, 2013, 52, 501-509.	1.9	27
31	Comparison of Mechanical Properties and Curing Characteristics of Natural Rubber Composites with Different Coupling Agents. Advanced Materials Research, 2013, 858, 24-31.	0.3	3
32	Effects of Filler Loading and Different Preparation Methods on Properties of Cassava Starch/Natural Rubber Composites. Polymer-Plastics Technology and Engineering, 2012, 51, 940-944.	1.9	10
33	RECYCLING WASTE NATURAL RUBBER LATEX BY BLENDING WITH POLYSTYRENE – CHARACTERIZATION OF MECHANICAL PROPERTIES. International Journal of Modern Physics Conference Series, 2012, 06, 391-396.	0.7	4
34	Maleated Natural Rubber as a Coupling Agent for Recycled High Density Polyethylene/Natural Rubber/Kenaf Powder Biocomposites. Polymer-Plastics Technology and Engineering, 2012, 51, 904-910.	1.9	30
35	Effects of partial replacement of commercial fillers by recycled poly(ethylene terephthalate) powder on the properties of natural rubber composites. Journal of Vinyl and Additive Technology, 2012, 18, 139-146.	1.8	27
36	Thermal and mechanical behavior of natural rubber latexâ€silica aerogel film. Journal of Applied Polymer Science, 2012, 124, 3108-3116.	1.3	27

#	Article	IF	CITATIONS
37	Comparison of the Different Vulcanization Techniques of Styrene Modified Natural Rubber (SNR) as an Impact Modifier of Natural Rubber-Based High Impact Polystyrene (NRHIPS). Polymer-Plastics Technology and Engineering, 2011, 50, 121-126.	1.9	4
38	Effect of different types of filler and filler loadings on the properties of carboxylated acrylonitrile–butadiene rubber latex films. Journal of Applied Polymer Science, 2011, 119, 2815-2823.	1.3	27
39	Effect of In Situ Polymerization of Styrene onto Natural Rubber on Adhesion Properties of Styrene-Natural Rubber (SNR) Adhesives. Journal of Adhesion, 2010, 86, 859-873.	1.8	8
40	Thermoplastic Elastomer Composites of Palm Ash-Filled Ethylene Vinyl Acetate/Natural Rubber Blends: Effects of Palm Ash Loading and Size. Polymer-Plastics Technology and Engineering, 2009, 48, 1062-1069.	1.9	15
41	Effects of the filler loading and aging time on the mechanical and electrical conductivity properties of carbon black filled natural rubber. Journal of Applied Polymer Science, 2008, 110, 747-752.	1.3	30
42	Study of Fatigue Life and Filler Interaction of Paper Sludge Filled Epoxidized Natural Rubber (ENR) and Maleated Natural Rubber (MNR) Composites. Journal of Polymers and the Environment, 2007, 15, 67-74.	2.4	15
43	Diffusion and Reactions of Oxygen During Ageing for Conventionally Cured Natural Rubber Vulcanisate. Polymer-Plastics Technology and Engineering, 2006, 45, 893-896.	1.9	9
44	The Effect of Pre-Vulcanization Temperature on Mechanical and Rheological Properties of Starch Filled Natural Rubber Latex Compounds. Advanced Materials Research, 0, 858, 184-189.	0.3	0
45	Soil Burial Studies for Biodegradation of Natural Rubber Latex Films. Advanced Materials Research, 0, 844, 406-409.	0.3	5
46	Effect of Lamination Layers on Tensile Properties and Mould Cleaning Efficiency of Laminated NBR Latex Composite. Advanced Materials Research, 0, 1024, 189-192.	0.3	0
47	The Influence of Starch Gelatinization on Mechanical Properties of Natural Rubber Latex Films. Advanced Materials Research, 0, 1024, 184-188.	0.3	1
48	Effect of Different Thickness of Core Layer on Tensile Properties of Laminated Natural Rubber Latex Film. Advanced Materials Research, 0, 1024, 259-262.	0.3	1