List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4083772/publications.pdf Version: 2024-02-01

HALLIN

#	Article	IF	CITATIONS
1	Anion pathways in CLCF fluoride/proton antiporters. Chemical Physics Letters, 2021, 762, 138123.	2.6	7
2	Multivalent lipid targeting by the calcium-independent C2A domain of synaptotagmin-like protein 4/granuphilin. Journal of Biological Chemistry, 2021, 296, 100159.	3.4	8
3	Adaptive-Partitioning Multilayer Dynamics Simulations: 1. On-the-Fly Switch between Two Quantum Levels of Theory. Journal of Chemical Theory and Computation, 2021, 17, 5456-5465.	5.3	7
4	Improved indicator algorithms for tracking a hydrated proton as a local structural defect in Grotthuss diffusion in aqueous solutions. Chemical Physics Letters, 2021, 784, 139121.	2.6	4
5	Using High-Throughput Structure Prediction and Evolutionary Alignment to Map Electrostatic Protein-Membrane Interactions. Biophysical Journal, 2020, 118, 394a-395a.	0.5	0
6	Electrostatic Membrane Interaction of Synaptotagmin-Like Protein 4: Simulations of Mutant C2A Domains. Biophysical Journal, 2020, 118, 527a-528a.	0.5	0
7	Enabling Proton Transport Through Ion Channels with Adaptive QM/MM. Biophysical Journal, 2020, 118, 609a.	0.5	0
8	Riding elevators into and out of cells. ELife, 2020, 9, .	6.0	1
9	A Computational Study of the Essential Transmembrane Protein Nark as Nitrate/Nitrite Exchanger. Biophysical Journal, 2019, 116, 399a.	0.5	0
10	Tracking Proton Transfer through Titratable Amino Acid Side Chains in Adaptive QM/MM Simulations. Journal of Chemical Theory and Computation, 2019, 15, 5794-5809.	5.3	18
11	Adaptive Partitioning QM/MM for Molecular Dynamics Simulations: 6. Proton Transport through a Biological Channel. Journal of Chemical Theory and Computation, 2019, 15, 892-905.	5.3	27
12	Proton Transport in E. Coli CLC Transport Protein by Adaptive QM/MM Calculations. Biophysical Journal, 2019, 116, 432a.	0.5	0
13	Membrane Binding by Synaptotagmin-Like Protein 4: Site Directed Mutagenesis of the Lipid Interaction Surface. Biophysical Journal, 2019, 116, 518a.	0.5	0
14	Membrane Binding of Synaptotagmin-Like Protein 4: Insight from Molecular Dynamics Simulations. Biophysical Journal, 2019, 116, 372a.	0.5	0
15	The Synaptotagmin Calcium-Binding Loops Modulate the Rate of Fusion Pore Expansion. Biophysical Journal, 2018, 114, 282a.	0.5	0
16	Multivalent Membrane Lipid Targeting by the Calcium-Independent C2A Domain of Slp-4/Granuphilin. Biophysical Journal, 2018, 114, 275a.	0.5	0
17	Adaptive QM/MM for Molecular Dynamics Simulations: 5. On the Energy-Conserved Permuted Adaptive-Partitioning Schemes. Molecules, 2018, 23, 2170.	3.8	22
18	The synaptotagmin C2B domain calcium-binding loops modulate the rate of fusion pore expansion. Molecular Biology of the Cell, 2018, 29, 834-845.	2.1	30

#	Article	IF	CITATIONS
19	The high-affinity calcium sensor synaptotagmin-7 serves multiple roles in regulated exocytosis. Journal of General Physiology, 2018, 150, 783-807.	1.9	48
20	Chloride Ion Transport by the E. coli CLC Clâ^'/H+ Antiporter: A Combined Quantum-Mechanical and Molecular-Mechanical Study. Frontiers in Chemistry, 2018, 6, 62.	3.6	10
21	Adaptive quantum/molecular mechanics: what have we learned, where are we, and where do we go from here?. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017, 7, e1310.	14.6	60
22	Restrained Proton Indicator in Combined Quantum-Mechanics/Molecular-Mechanics Dynamics Simulations of Proton Transfer through a Carbon Nanotube. Journal of Physical Chemistry B, 2017, 121, 8585-8592.	2.6	7
23	Cover Image, Volume 7, Issue 5. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017, 7, e1339.	14.6	2
24	Multivalent Membrane Lipid Targeting by the Calcium-Independent C2 Domains of Granuphilin: Evidence from Computation and Experiment. Biophysical Journal, 2016, 110, 432a.	0.5	0
25	Adaptive Partitioning QM/MM Dynamics Simulations for Substrate Uptake, Product Release, and Solvent Exchange. Methods in Enzymology, 2016, 577, 341-357.	1.0	8
26	Poreâ€scale modeling of vapor transport in partially saturated capillary tube with variable area using chemical potential. Water Resources Research, 2016, 52, 7023-7035.	4.2	4
27	Membrane Association of Synaptotagmin 7 C2A Domain by Molecular Dynamics Simulations. Biophysical Journal, 2015, 108, 248a.	0.5	0
28	Combined QM/MM Study of the Translocation of Chloride Ions through Escherichia Coli Chloride Ion Transporters. Biophysical Journal, 2015, 108, 466a-467a.	0.5	0
29	Adaptive-Partitioning QM/MM for Molecular Dynamics Simulations: 4. Proton Hopping in Bulk Water. Journal of Chemical Theory and Computation, 2015, 11, 2398-2411.	5.3	49
30	Membrane Docking of the Synaptotagmin 7 C2A Domain: Computation Reveals Interplay between Electrostatic and Hydrophobic Contributions. Biochemistry, 2015, 54, 5696-5711.	2.5	21
31	Recent developments in QM/MM methods towards open-boundary multi-scale simulations. Molecular Simulation, 2015, 41, 168-189.	2.0	55
32	Membrane Docking of the Synaptotagmin 7 C2A Domain: Electron Paramagnetic Resonance Measurements Show Contributions from Two Membrane Binding Loops. Biochemistry, 2015, 54, 5684-5695.	2.5	20
33	Recent Progress in Adaptive-Partitioning QM/MM Methods for Born-Oppenheimer Molecular Dynamics. Challenges and Advances in Computational Chemistry and Physics, 2015, , 93-113.	0.6	11
34	Molecular dynamics simulations of ion solvation by flexibleâ€boundary QM/MM: Onâ€theâ€fly partial charge transfer between QM and MM subsystems. Journal of Computational Chemistry, 2014, 35, 1778-1788.	3.3	19
35	Computational Studies of Carbodiimide Rings. Journal of Organic Chemistry, 2014, 79, 3781-3788.	3.2	5
36	Adaptive-Partitioning QM/MM Dynamics Simulations: 3. Solvent Molecules Entering and Leaving Protein Binding Sites. Journal of Chemical Theory and Computation, 2014, 10, 4765-4776.	5.3	36

#	Article	IF	CITATIONS
37	A theoretical study of temperature dependence of cluster formation from sulfuric acid and ammonia. Chemical Physics, 2014, 433, 60-66.	1.9	17
38	Charge Transfer and Polarization for Chloride Ions Bound in ClC Transport Proteins: Natural Bond Orbital and Energy Decomposition Analyses. Journal of Physical Chemistry B, 2013, 117, 16029-16043.	2.6	13
39	Specific Reaction Path Hamiltonian for Proton Transfer in Water: Reparameterized Semiempirical Models. Journal of Chemical Theory and Computation, 2013, 9, 2672-2686.	5.3	42
40	Adaptive-Partitioning Redistributed Charge and Dipole Schemes for QM/MM Dynamics Simulations: On-the-fly Relocation of Boundaries that Pass through Covalent Bonds. Journal of Chemical Theory and Computation, 2011, 7, 3625-3634.	5.3	48
41	Charge delocalization upon chloride ion binding in CIC chloride ion channels/transporters. Chemical Physics Letters, 2011, 502, 112-117.	2.6	12
42	Flexible-boundary QM/MM calculations: II. Partial charge transfer across the QM/MM boundary that passes through a covalent bond. Theoretical Chemistry Accounts, 2010, 126, 315-322.	1.4	22
43	Alcohol Binding to the Odorant Binding Protein LUSH: Multiple Factors Affecting Binding Affinities. Biochemistry, 2010, 49, 6136-6142.	2.5	6
44	Quantum Tunneling in Testosterone 6β-Hydroxylation by Cytochrome P450: Reaction Dynamics Calculations Employing Multiconfiguration Molecularâ^'Mechanical Potential Energy Surfaces. Journal of Physical Chemistry A, 2009, 113, 11501-11508.	2.5	13
45	Regioselectivity preference of testosterone hydroxylation by cytochrome P450 3A4. Theoretical Chemistry Accounts, 2008, 121, 313-319.	1.4	12
46	Flexible-Boundary Quantum-Mechanical/Molecular-Mechanical Calculations:  Partial Charge Transfer between the Quantum-Mechanical and Molecular-Mechanical Subsystems. Journal of Chemical Theory and Computation, 2008, 4, 414-425.	5.3	45
47	Multicoefficient Gaussian-3 Calculation of the Rate Constant for the OH + CH4Reaction and Its12C/13C Kinetic Isotope Effect with Emphasis on the Effects of Coordinate System and Torsional Treatment. Journal of Physical Chemistry A, 2007, 111, 11706-11717.	2.5	30
48	Self-Consistent Polarization of the Boundary in the Redistributed Charge and Dipole Scheme for Combined Quantum-Mechanical and Molecular-Mechanical Calculations. Journal of Chemical Theory and Computation, 2007, 3, 1378-1398.	5.3	65
49	Adaptive Partitioning in Combined Quantum Mechanical and Molecular Mechanical Calculations of Potential Energy Functions for Multiscale Simulations. Journal of Physical Chemistry B, 2007, 111, 2231-2241.	2.6	172
50	QM/MM: what have we learned, where are we, and where do we go from here?. Theoretical Chemistry Accounts, 2007, 117, 185-199.	1.4	1,053
51	Multiconfiguration Molecular Mechanics Based on Combined Quantum Mechanical and Molecular Mechanical Calculations. Journal of Chemical Theory and Computation, 2006, 2, 1237-1254.	5.3	38
52	Combined valence bond-molecular mechanics potential-energy surface and direct dynamics study of rate constants and kinetic isotope effects for the H+C2H6 reaction. Journal of Chemical Physics, 2006, 124, 044315.	3.0	47
53	Theoretical Quantitative Spectroscopy: Computer Simulation of Molecular Spectra. , 2006, , 171-183.		1
54	Rotation–Vibration Motion of Pyramidal XY3 Molecules Described in the Eckart Frame: The Calculation of Intensities with Application to NH3. Advances in Quantum Chemistry, 2005, 48, 209-238.	0.8	37

#	Article	IF	CITATIONS
55	Potential-energy surface for the electronic ground state of NH3 up to 20000cmâ^'1 above equilibrium. Journal of Chemical Physics, 2005, 123, 134308.	3.0	68
56	Temperature Dependence of Carbon-13 Kinetic Isotope Effects of Importance to Global Climate Change. Journal of the American Chemical Society, 2005, 127, 2830-2831.	13.7	21
57	Redistributed Charge and Dipole Schemes for Combined Quantum Mechanical and Molecular Mechanical Calculations. Journal of Physical Chemistry A, 2005, 109, 3991-4004.	2.5	123
58	Dipole moment and rovibrational intensities in the electronic ground state of NH3: Bridging the gap betweenab initiotheory and spectroscopic experiment. Journal of Chemical Physics, 2005, 122, 104317.	3.0	43
59	Rotation–vibration motion of pyramidal XY3molecules described in the Eckart frame: Theory and application to NH3. Molecular Physics, 2005, 103, 359-378.	1.7	55
60	QM/MM Study of the Productâ^'Enzyme Complex in P450cam Catalysis. Journal of Physical Chemistry B, 2004, 108, 10083-10088.	2.6	34
61	Efficient Molecular Mechanics for Chemical Reactions:Â Multiconfiguration Molecular Mechanics Using Partial Electronic Structure Hessians. Journal of Physical Chemistry A, 2004, 108, 4112-4124.	2.5	32
62	Quantum Mechanical/Molecular Mechanical Investigation of the Mechanism of Câ^'H Hydroxylation of Camphor by Cytochrome P450cam:Â Theory Supports a Two-State Rebound Mechanism. Journal of the American Chemical Society, 2004, 126, 4017-4034.	13.7	269
63	Vibrational energies for NH3 based on high level ab initio potential energy surfaces. Journal of Chemical Physics, 2002, 117, 11265-11276.	3.0	68
64	Calculation of the Si–H stretching–bending overtones in SiHCl[sub 3] employing ab initio potential energy and dipole moment surfaces. Journal of Chemical Physics, 2002, 116, 105.	3.0	3
65	Study of the stretching vibrational band intensities of XH4 molecules employing four-dimensionalab initio(X=C and Sn) andeffective(X=C and Si) dipole moment surfaces. Journal of Chemical Physics, 2002, 117, 10073-10080.	3.0	3
66	The Elusive Oxidant Species of Cytochrome P450 Enzymes:  Characterization by Combined Quantum Mechanical/Molecular Mechanical (QM/MM) Calculations. Journal of the American Chemical Society, 2002, 124, 8142-8151.	13.7	290
67	Green Fluorescent Proteins:Â Empirical Force Field for the Neutral and Deprotonated Forms of the Chromophore. Molecular Dynamics Simulations of the Wild Type and S65T Mutant. Journal of Physical Chemistry B, 2002, 106, 6310-6321.	2.6	110
68	High-Resolution Fourier-Transform Intracavity Laser Absorption Spectroscopy of D2O in the Region of the Al¼21+1¼23 Band. Journal of Molecular Spectroscopy, 2002, 212, 89-95.	1.2	52
69	High resolution vibration-rotation spectrum of the D2O molecule in the region near the 2ν1+ ν2+ ν3absorption band. Molecular Physics, 2001, 99, 931-937.	1.7	45
70	Band strengths for C–H stretching polyads of CHBr3 calculated by use of a two-dimensional electric dipole moment surface from density functional theory. Journal of Chemical Physics, 2001, 114, 8905-8912.	3.0	9
71	The vibrational overtones of SiH4 isotopomers: experimental wavenumbers, assignment, ab initio dipole moment surfaces and intensities. Physical Chemistry Chemical Physics, 2001, 3, 3506-3517.	2.8	14
72	Study of the Perpendicular Band Intensities of the CH Chromophore in CHCl3, CHBr3, and CHI3 with Three-Dimensional Dipole Moment Surface from Density Functional Calculations. Journal of Physical Chemistry A, 2001, 105, 8428-8433.	2.5	4

#	Article	IF	CITATIONS
73	Overtones of the Siâ^'H Stretchingâ^'Bending Polyad in SiHD3: Internal Coordinate Force Field, ab initio Dipole Moment Surfaces, and Band Intensities. Journal of Physical Chemistry A, 2001, 105, 6065-6072.	2.5	9
74	Four-dimensional dipole moment surfaces and local mode vibrational band intensities of GeH4. Chemical Physics Letters, 2001, 349, 131-136.	2.6	5
75	The stretching vibrational overtone spectra of PH3: Local mode vibrational analysis, dipole moment surfaces from density functional theory and band intensities. Journal of Chemical Physics, 2001, 114, 7018-7026.	3.0	28
76	The Si–H stretching–bending overtone polyads of SiHF3: Assignments, band intensities, internal coordinate force field, and ab initio dipole moment surfaces. Journal of Chemical Physics, 2001, 115, 1378-1391.	3.0	16
77	High-Resolution Study of the First Hexad of D2O. Journal of Molecular Spectroscopy, 2000, 200, 25-33.	1.2	52
78	High-Resolution Fourier Transform Spectrum of the D2O Molecule in the Region of the Second Triad of Interacting Vibrational States. Journal of Molecular Spectroscopy, 2000, 200, 34-39.	1.2	55
79	High-Resolution Study of Strongly Interacting Vibrational Bands of HDO in the Region 7600–8100 cmâ^'1. Journal of Molecular Spectroscopy, 2000, 203, 228-234.	1.2	62
80	High-Resolution Study of the (v1 + 12v2 + v3 = 3) Polyad of Strongly Interacting Vibrational Bands of D2O. Journal of Molecular Spectroscopy, 2000, 204, 216-225.	1.2	52
81	Calculating relative intensities for CH stretching polyads of CHI3 with ab initio dipole moment surface. Chemical Physics Letters, 2000, 332, 569-575.	2.6	8
82	Coriolis interaction in the local mode (n100;F2) combination states of GeH4. Molecular Physics, 2000, 98, 1409-1413.	1.7	2
83	The ab initio calculated dipole moment surface and overtone relative intensities of CH chromophore in CHCl3. Journal of Chemical Physics, 2000, 112, 7484-7489.	3.0	11
84	Infrared intracavity laser absorption spectroscopy with a continuous-scan Fourier-transform interferometer. Applied Optics, 2000, 39, 2221.	2.1	24
85	Nonlinearity of the Dipole Moment Surface and Intensities Anomaly of CHCl ₃ . Chinese Physics Letters, 2000, 17, 13-15.	3.3	7
86	Identifying Molecular Orientation of IndividualC60on aSi(111)â^'(7×7)Surface. Physical Review Letters, 1999, 83, 3001-3004.	7.8	135
87	High resolution spectroscopic study of CH ₃ D in the region 5900–6100 cm ^{â^'1} . Molecular Physics, 1999, 97, 787-795.	1.7	13
88	Local mode overtone intensities of SiH4 and GeH4 from a bond dipole model with an ab initio calculated dipole moment surface. Chemical Physics Letters, 1999, 308, 137-141.	2.6	17
89	High-resolution spectroscopic study of H ₂ ⁸⁰ Se in the ν(stretch) = 5 and 6 local-mode pairs states. Molecular Physics, 1999, 97, 503-510.	1.7	7
90	Fourier-transform intra-cavity laser absorption spectroscopy of HOD νOD=5 overtone. Physical Chemistry Chemical Physics, 1999, 1, 3727-3730.	2.8	35

#	Article	IF	CITATIONS
91	High-Resolution Spectroscopic Study of the (310) Local Mode Combination Band System of AsH3. Journal of Molecular Spectroscopy, 1998, 187, 89-96.	1.2	21
92	Absorption Intensity of Stretching Overtone States of Silane and Germane. Journal of Molecular Spectroscopy, 1998, 192, 249-256.	1.2	11
93	The high resolution spectrum of AsH3 (400) local mode state: symmetry reduction and rotational re-quantization. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1998, 54, 1947-1960.	3.9	7
94	High resolution spectroscopic study of arsine in the region 6000–6500 cmâ^'1. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1998, 55, 109-119.	3.9	6
95	High resolution vibration–rotation spectra of the arsine local mode (110 A1/E) band. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 1397-1401.	1.7	5
96	Title is missing!. , 0, , .		6