Cuiping Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4083194/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental determination of the isothermal sections and liquidus surface projection of the Mo–Si–V ternary system. International Journal of Materials Research, 2022, .	0.3	0
2	Experimental determination of isothermal sections of the Hf–Nb–Ni system at 950 and 1100 ° C. International Journal of Materials Research, 2022, 113, 460-475.	0.3	4
3	Thermodynamic optimizing of the Li–Sn system. International Journal of Materials Research, 2022, 97, 10-16.	0.3	4
4	Thermodynamic assessment of the Mg–Nd system. International Journal of Materials Research, 2022, 97, 130-135.	0.3	0
5	Experimental Investigation of Intermetallics and Phase Equilibria in the Hf-Mo-Ni System at 1100 °C and 950 °C. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 1059-1076.	2.2	5
6	Solidification processes of as-cast alloys and phase equilibria at 1 300 °C of the Nb–Si–V ternary system. International Journal of Materials Research, 2020, 111, 103-118.	0.3	1
7	Experimental Investigation and Thermodynamic Modelling of the Fe-Ni-Ta System. Journal of Phase Equilibria and Diffusion, 2020, 41, 500-521.	1.4	4
8	The Role of Ti in the Preparation of SiC/7075 Aluminum Matrix Composite. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 293-298.	1.0	3
9	Phase Equilibria in the Fe-Mo-Nb System at 1100°C and 1200°C. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 377-387.	2.2	2
10	Experimental Liquidus Surface Projection and Thermodynamic Modeling of the Fe-Mo-Nb System. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 3358-3372.	2.2	2
11	Oxygen Vacancy Kinetics Mechanism of the Negative Forming-Free Process and Multilevel Resistance Based on Hafnium Oxide RRAM. Journal of Nanomaterials, 2019, 2019, 1-9.	2.7	12
12	Experimental Investigation of the Phase Relations in the Al-Co-Ti System. Journal of Phase Equilibria and Diffusion, 2019, 40, 254-274.	1.4	1
13	Data and analyses of phase relations in the Ce-Fe-Sb ternary system. Data in Brief, 2018, 16, 211-226.	1.0	0
14	Experimental Investigation of Phase Equilibria in the Fe-Nb-Ta System. Journal of Phase Equilibria and Diffusion, 2018, 39, 490-501.	1.4	1
15	Thermodynamic description of the Cu–S–Sn system. International Journal of Materials Research, 2018, 109, 201-218.	0.3	2
16	Thermodynamic modelling of the Hf–Pt system. International Journal of Materials Research, 2018, 109, 851-857.	0.3	2
17	Thermodynamic Modeling of the Pt-Te and Pt-Sb-Te Systems. Journal of Electronic Materials, 2015, 44, 2638-2650.	2.2	6
18	Thermodynamic modeling of the In–Pt–Sb system. International Journal of Materials Research, 2014, 105, 525-536.	0.3	5

CUIPING GUO

#	Article	IF	CITATIONS
19	Thermodynamic description of the Ta–W–Zr system. International Journal of Materials Research, 2014, 105, 1048-1056.	0.3	6
20	Thermodynamic Re-modeling of the Sb-Te System Using Associate and Ionic Models. Journal of Electronic Materials, 2014, 43, 4082-4089.	2.2	9
21	Thermodynamic modeling of the Ba–Mg binary system. International Journal of Materials Research, 2013, 104, 358-363.	0.3	5
22	Thermodynamic re-assessment of the Ni – Sn system. International Journal of Materials Research, 2013, 104, 51-59.	0.3	17
23	A thermodynamic description of the Ce–La–Mg system. International Journal of Materials Research, 2010, 101, 1424-1431.	0.3	9
24	Thermodynamic re-modeling of the Co–Gd system. International Journal of Materials Research, 2010, 101, 1339-1346.	0.3	15
25	Thermodynamic modeling of the Pt–Zr system. International Journal of Materials Research, 2010, 101, 819-826.	0.3	3
26	The heat capacity measurements of CoSb ₃ -based Skutterudite compounds. International Journal of Materials Research, 2010, 101, 808-811.	0.3	2
27	Thermodynamic Description of the Al-Mo and Al-Fe-Mo Systems. Journal of Phase Equilibria and Diffusion, 2009, 30, 487-501.	1.4	36
28	A Thermodynamic Description of the Al-Cr-Si System. Journal of Phase Equilibria and Diffusion, 2009, 30, 462-479.	1.4	18
29	Thermodynamic modeling of the Cu–Se system. International Journal of Materials Research, 2008, 99, 294-300.	0.3	7
30	Thermodynamic description of the Ce-Mg-Y and Mg-Nd-Y systems. International Journal of Materials Research, 2008, 99, 650-688.	0.3	14
31	Experimental Determination of Phase Equilibria in the Ni–Hf–Ta System at 950 °C and 1100 °C. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 0, , 1.	2.2	4