Tae Hyun Sung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4083187/publications.pdf

Version: 2024-02-01

331670 361022 1,510 81 21 35 h-index citations g-index papers 82 82 82 1164 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Road energy harvester designed as a macro-power source using the piezoelectric effect. International Journal of Hydrogen Energy, 2016, 41, 12563-12568.	7.1	104
2	Design and optimization of piezoelectric impact-based micro wind energy harvester for wireless sensor network. Sensors and Actuators A: Physical, 2015, 222, 314-321.	4.1	78
3	A piezoelectric impact-induced vibration cantilever energy harvester from speed bump with a low-power power management circuit. Sensors and Actuators A: Physical, 2017, 254, 134-144.	4.1	74
4	Optimized composite piezoelectric energy harvesting floor tile for smart home energy management. Energy Conversion and Management, 2018, 171, 31-37.	9.2	71
5	Designing and manufacturing a piezoelectric tile for harvesting energy from footsteps. Current Applied Physics, 2015, 15, 669-674.	2.4	65
6	Design of piezoelectric ocean-wave energy harvester using sway movement. Sensors and Actuators A: Physical, 2017, 260, 191-197.	4.1	65
7	Performance of a speed bump piezoelectric energy harvester for an automatic cellphone charging system. Applied Energy, 2019, 247, 221-227.	10.1	59
8	Watts-level road-compatible piezoelectric energy harvester for a self-powered temperature monitoring system on an actual roadway. Applied Energy, 2019, 243, 313-320.	10.1	58
9	A multifunctional road-compatible piezoelectric energy harvester for autonomous driver-assist LED indicators with a self-monitoring system. Applied Energy, 2019, 242, 294-301.	10.1	56
10	Piezoelectric energy harvesting system with magnetic pendulum movement for self-powered safety sensor of trains. Sensors and Actuators A: Physical, 2016, 250, 210-218.	4.1	51
11	Feasibility study of impact-based piezoelectric road energy harvester for wireless sensor networks in smart highways. Sensors and Actuators A: Physical, 2017, 261, 317-324.	4.1	48
12	Piezoelectric device operating as sensor and harvester to drive switching circuit in LED shoes. Energy, 2019, 177, 87-93.	8.8	47
13	Lowâ€Temperature Sintering and Piezoelectric Properties of 0.65Pb(Zr _{1â^²<i>x</i>} Ti _{<i>x</i>})O ₃ –0.35Pb(Ni _{0.33} Nb _{Ceramics. Journal of the American Ceramic Society, 2011, 94, 3442-3448.}	ub:8 0 867 <td>suฮร)O</td>	suฮร)O
14	Development of a pavement block piezoelectric energy harvester for self-powered walkway applications. Applied Energy, 2019, 256, 113916.	10.1	42
15	Study on increasing output current of piezoelectric energy harvester by fabrication of multilayer thick film. Sensors and Actuators A: Physical, 2018, 269, 524-534.	4.1	29
16	Carbon nanotube-reduced graphene oxide fiber with high torsional strength from rheological hierarchy control. Nature Communications, 2021, 12, 396.	12.8	29
17	Synthesis and characterization of nanofiber-type hydrophobic organic materials as electrodes for improved performance of PVDF-based piezoelectric nanogenerators. Nano Energy, 2019, 58, 11-22.	16.0	28
18	Photon energy transfer by quantum dots in organic–inorganic hybrid solar cells through FRET. Journal of Materials Chemistry A, 2016, 4, 10444-10453.	10.3	24

#	Article	IF	CITATIONS
19	Enhanced energy-generation performance of a landfilled road-capable piezoelectric harvester to scavenge energy from passing vehicles. Energy Conversion and Management, 2020, 215, 112900.	9.2	24
20	A lever-type piezoelectric energy harvester with deformation-guiding mechanism for electric vehicle charging station on smart road. Energy, 2021, 218, 119540.	8.8	22
21	Design of hydro electromagnetic and piezoelectric energy harvesters for a smart water meter system. Sensors and Actuators A: Physical, 2017, 261, 261-267.	4.1	21
22	A Bending-Type Piezoelectric Energy Harvester with a Displacement-Amplifying Mechanism for Smart Highways. Journal of the Korean Physical Society, 2018, 73, 330-337.	0.7	21
23	A High Efficient Piezoelectric Windmill using Magnetic Force for Low Wind Speed in Wireless Sensor Networks. Journal of the Korean Physical Society, 2018, 73, 1889-1894.	0.7	19
24	Propeller-based Underwater Piezoelectric Energy Harvesting System for an Autonomous IoT Sensor System. Journal of the Korean Physical Society, 2020, 76, 251-256.	0.7	19
25	Development of a hybrid type smart pen piezoelectric energy harvester for an IoT platform. Energy, 2021, 222, 119845.	8.8	19
26	Study on Application of Piezoelectricity to Korea Train eXpress (KTX). Ferroelectrics, 2013, 449, 11-23.	0.6	17
27	Significant power enhancement method of magneto-piezoelectric energy harvester through directional optimization of magnetization for autonomous IIoT platform. Applied Energy, 2019, 254, 113710.	10.1	16
28	Study on the Strain Effect of a Piezoelectric Energy Harvesting Module. Ferroelectrics, 2013, 449, 33-41.	0.6	15
29	Optimal design and application of a piezoelectric energy harvesting system using multiple piezoelectric modules. Journal of Electroceramics, 2014, 32, 396-403.	2.0	15
30	Nonlinear Piezoelectric Energy Harvester with Ball Tip Mass. Sensors and Actuators A: Physical, 2018, 277, 124-133.	4.1	15
31	Piezoelectric energy harvesting system for the vertical vibration of superconducting Maglev train. Journal of Electroceramics, 2013, 31, 35-41.	2.0	14
32	PVDF based flexible piezoelectric nanogenerators using conjugated polymer:PCBM blend systems. Sensors and Actuators A: Physical, 2017, 259, 112-120.	4.1	14
33	Design of optimized cantilever form of a piezoelectric energy harvesting system for a wireless remote switch. Sensors and Actuators A: Physical, 2018, 280, 340-349.	4.1	14
34	Designing a piezoelectric energy harvesting system for the superconductor Maglev. Journal of Electroceramics, 2013, 31, 1-7.	2.0	13
35	Restoration and Reinforcement Method for Damaged Piezoelectric Materials. Ferroelectrics, 2013, 449, 52-61.	0.6	13
36	Design Optimization of PZT-Based Piezoelectric Cantilever Beam by Using Computational Experiments. Journal of Electronic Materials, 2016, 45, 3848-3858.	2.2	13

#	Article	IF	CITATIONS
37	Sustainable micro-power circuit for piezoelectric energy harvesting tile. Integrated Ferroelectrics, 2017, 183, 193-209.	0.7	13
38	Uniform stress distribution road piezoelectric generator with free-fixed-end type central strike mechanism. Energy, 2022, 239, 121812.	8.8	13
39	Design of a New Piezoelectric Energy Harvester Based on Secondary Impact. Ferroelectrics, 2013, 449, 83-93.	0.6	12
40	Hybrid-type (d33 and d31) impact-based piezoelectric hydroelectric energy harvester for watt-level electrical devices. Sensors and Actuators A: Physical, 2016, 245, 40-48.	4.1	12
41	Robust design optimization of fixed-fixed beam piezoelectric energy harvester considering manufacturing uncertainties. Sensors and Actuators A: Physical, 2017, 260, 236-246.	4.1	12
42	Design of a multi-array piezoelectric energy harvester for a wireless switch. International Journal of Hydrogen Energy, 2016, 41, 12696-12703.	7.1	11
43	A Flexible Piezoelectric Energy Harvester-Based Single-Layer WS2 Nanometer 2D Material for Self-Powered Sensors. Energies, 2021, 14, 2097.	3.1	11
44	Enhanced surface composite coating on Ti811 alloy by laser cladding towards improved nano-hardness. Ceramics International, 2022, 48, 18773-18783.	4.8	11
45	Excellent carrier transport materials produced by controlled molecular stacking and their application in flexible organic electronic devices. Journal of Materials Chemistry A, 2019, 7, 14790-14805.	10.3	10
46	Graphene Foam Cantilever Produced via Simultaneous Foaming and Doping Effect of an Organic Coagulant. ACS Applied Materials & Samp; Interfaces, 2020, 12, 10763-10771.	8.0	9
47	Wearable Shoe-Mounted Piezoelectric Energy Harvester for a Self-Powered Wireless Communication System. Energies, 2022, 15, 237.	3.1	8
48	Feasibility study on application of piezoelectricity to convert vibrations of Korea Train eXpress., 2012,		6
49	Effective Piezoelectric Area for Hitting-Type Piezoelectric Energy Harvesting System. Japanese Journal of Applied Physics, 2013, 52, 10MB03.	1.5	6
50	In situ TiC/Ti2Ni reinforced CrTi4-based composites during laser cladding. Journal of Alloys and Compounds, 2022, 892, 162086.	5.5	6
51	Design of Piezoelectric Energy Harvesting System by Magnetic Force–Controlled Resonance Frequency. Ferroelectrics, 2013, 449, 24-32.	0.6	5
52	Development of impact-based piezoelectric road energy harvester for practical application., 2016,,.		5
53	Self-Powered Operational Amplifying System with a Bipolar Voltage Generator Using a Piezoelectric Energy Harvester. Electronics (Switzerland), 2020, 9, 41.	3.1	5
54	The effectiveness of different width piezoelectric energy harvester in the pedestrian floor tile energy harvesting system for internet of things sensors. Journal of the Korean Physical Society, 2021, 78, 81-88.	0.7	5

#	Article	IF	Citations
55	Wearable Piezoelectric Yarns with Inner Electrodes for Energy Harvesting and Signal Sensing. Advanced Materials Technologies, 2022, 7, .	5.8	5
56	Solidification of YBa $<$ sub $>$ 2 $<$ /sub $>$ 3 $<$ /sub $>$ 0 $<$ sub $>$ 6 $+$ 1 $<$ /sub $>$: Part I. Morphology. Journal of Materials Research, 1998, 13, 565-573.	2.6	4
57	Design of vibration exciter by using permanent magnets for application to piezoelectric energy harvesting. , 2012, , .		4
58	Study of Charging Efficiency of a Piezoelectric Energy Harvesting System Using Rectifier and Array Configuration. Ferroelectrics, 2013, 449, 42-51.	0.6	4
59	Stress Distribution Design of Additional Substrate for Piezoelectricity. Ferroelectrics, 2013, 449, 72-82.	0.6	4
60	Energy harvesting characteristics of unimorph cantilever generator using sintering conditions. Journal of Electroceramics, 2015, 34, 109-113.	2.0	4
61	Mobility of Air-Stable p-type Polythiophene Field-Effect Transistors Fabricated Using Oxidative Chemical Vapor Deposition. Journal of Electronic Materials, 2020, 49, 3465-3471.	2.2	4
62	Increase of Current Limiting Capacity of SFCLs by Using Matrix-Type SFCL Module. IEEE Transactions on Applied Superconductivity, 2011, 21, 1280-1283.	1.7	3
63	Establishment of the evaluation standard and the analysis technique for the tip mass method in piezoelectric energy - harvesting systems. Journal of the Korean Physical Society, 2014, 65, 1943-1950.	0.7	3
64	Design of an impact-type piezoelectric energy harvesting system for increasing power and durability of piezoelectric ceramics. Japanese Journal of Applied Physics, 2014, 53, 08NB03.	1.5	3
65	Increasing the Durability of Piezoelectric Impact-based Micro Wind Generator in Real Application. Procedia Engineering, 2014, 87, 1210-1213.	1.2	3
66	Designing a piezoelectric energy harvester using clicking mechanism., 2016,,.		3
67	Increasing Energy-harvesting ability of piezoelectric unimorph cantilevers using Spring Supports. Journal of the Korean Physical Society, 2016, 68, 1262-1266.	0.7	3
68	Enhancing the dielectric property of 0.69PZT-0.31PZNN thick films by optimizing the poling condition. Journal of the Korean Physical Society, 2015, 66, 1549-1553.	0.7	2
69	Study on improving current generating time of piezoelectric energy harvesting system. Journal of Electroceramics, 2015, 34, 207-215.	2.0	2
70	Non-resonant piezoelectric transformer based power converter for ultra-low-power electronic devices. Sensors and Actuators A: Physical, 2016, 244, 86-94.	4.1	2
71	An Assessment of the Optimal Capacity and an Economic Evaluation of a Sustainable Photovoltaic Energy System in Korea. Sustainability, 2021, 13, 12264.	3.2	2
72	Design of supplemental plate for piezoelectric system to distribute impact force. , 2012, , .		1

#	Article	IF	CITATIONS
73	Study on reinforcement and repair of cracked piezoelectric materials. , 2012, , .		1
74	Optimization of a 0.69PZT-0.31PZNN thick film by controlling slurry viscosity and tape-casting blade height. Journal of the Korean Physical Society, 2014, 65, 2090-2094.	0.7	1
75	Designing a road energy harvester with multiple piezoelectric cantilever beams and a single tip mass. , 2016, , .		1
76	Self-Start Piezoelectric Energy Harvesting Circuit With Adjustable UVLO Converter for Wireless Sensor Network., 2017,,.		1
77	Rectifier and structural design for efficient energy harvesting system from impact-based piezoelectric array. , 2012, , .		0
78	Strain control for optimization of piezoelectric energy harvesting. , 2012, , .		0
79	Effect of ball size and ball milling time on piezoelectric properties of 0.69PZT-0.31PZNN., 2014,,.		O
80	Optimization of the Energy Conversion Efficiency by Bending Deflection Piezoelectric Cantilever Beams. Journal of the Korean Physical Society, 2020, 76, 948-953.	0.7	0
81	Effect of ball size and ball milling time on piezoelectric properties of 0.69PZT-0.31PZNN. , 2014, , .		O