Mohamed Ateia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4083095/publications.pdf

Version: 2024-02-01

49 papers

2,543 citations

257429 24 h-index 214788 47 g-index

49 all docs

49 docs citations

49 times ranked

2785 citing authors

#	Article	IF	CITATIONS
1	Novel fluorescence-based method for rapid quantification of live bacteria in river water and treated wastewater. Environmental Science Advances, 2022, 1, 30-36.	2.7	9
2	Ecological and human health risks of manure-borne steroid estrogens: A 20-year global synthesis study. Journal of Environmental Management, 2022, 301, 113708.	7.8	10
3	Emerging investigator series: microplastic sources, fate, toxicity, detection, and interactions with micropollutants in aquatic ecosystems – a review of reviews. Environmental Sciences: Processes and Impacts, 2022, 24, 172-195.	3.5	22
4	Cyclophane-based two-dimensional polymer formed by an interfacial click reaction. Cell Reports Physical Science, 2022, 3, 100806.	5 . 6	3
5	A Tunable Porous î²-Cyclodextrin Polymer Platform to Understand and Improve Anionic PFAS Removal. ACS Central Science, 2022, 8, 663-669.	11.3	27
6	Regrowth of <i>Escherichia coli</i> in environmental waters after chlorine disinfection: shifts in viability and culturability. Environmental Science: Water Research and Technology, 2022, 8, 1521-1534.	2.4	5
7	Regrowth of bacteria after light-based disinfection — What we know and where we go from here. Chemosphere, 2021, 268, 128850.	8.2	41
8	Microplastics and Their Degradation Products in Surface Waters: A Missing Piece of the Global Carbon Cycle Puzzle. ACS ES&T Water, 2021, 1, 214-216.	4.6	18
9	Impacts of Reactor Configuration, Degradation Mechanisms, and Water Matrices on Perfluorocarboxylic Acid Treatment Efficiency by the UV/Bi ₃ O(OH)(PO ₄) ₂ Photocatalytic Process. ACS ES&T Engineering, 2021, 1, 239-248.	7.6	33
10	Application of Quantitative Structure–Property Relationship Predictive Models to Water Treatment: A Critical Review. ACS ES&T Water, 2021, 1, 498-517.	4.6	21
11	Formation of Formaldehyde and Other Byproducts by TiO2 Photocatalyst Materials. Sustainability, 2021, 13, 4821.	3.2	6
12	Do Gas Nanobubbles Enhance Aqueous Photocatalysis? Experiment and Analysis of Mechanism. Catalysts, 2021, 11, 511.	3 . 5	10
13	Decorating graphene oxide with zeolitic imidazolate framework (ZIF-8) and pseudo-boehmite offers ultra-high adsorption capacity of diclofenac in hospital effluents. Chemosphere, 2021, 271, 129610.	8.2	105
14	Product analysis and insight into the mechanochemical destruction of anionic PFAS with potassium hydroxide. Journal of Hazardous Materials Advances, 2021, 3, 100014.	3.0	6
15	Removal of bromide from natural waters: Bromide-selective vs. conventional ion exchange resins. Chemosphere, 2020, 238, 124583.	8.2	58
16	Modeling the degradation and disinfection of water pollutants by photocatalysts and composites: A critical review. Science of the Total Environment, 2020, 698, 134197.	8.0	105
17	Periodic mesoporous organosilica nanomaterials for rapid capture of VOCs. Chemical Communications, 2020, 56, 607-610.	4.1	25
18	Best Practices for Evaluating New Materials as Adsorbents for Water Treatment. , 2020, 2, 1532-1544.		47

#	Article	IF	Citations
19	Easy-to-prepare graphene oxide/sodium montmorillonite polymer nanocomposite with enhanced adsorption performance. Journal of Water Process Engineering, 2020, 38, 101651.	5.6	65
20	Polymerized Molecular Receptors as Adsorbents to Remove Micropollutants from Water. Accounts of Chemical Research, 2020, 53, 2314-2324.	15.6	61
21	Oxidative torrefaction for cleaner utilization of biomass for soil amendment. Cleaner Engineering and Technology, 2020, 1, 100033.	4.0	12
22	Photocatalytic Degradation of Organic Micropollutants in Water by Zr-MOF/GO Composites. Journal of Composites Science, 2020, 4, 54.	3.0	19
23	Microplastics release precursors of chlorinated and brominated disinfection byproducts in water. Chemosphere, 2020, 251, 126452.	8.2	55
24	Photocatalytic Nanofiltration Membrane Using Zr-MOF/GO Nanocomposite with High-Flux and Anti-Fouling Properties. Catalysts, 2020, 10, 711.	3.5	22
25	Activated carbon and organic matter characteristics impact the adsorption of DBP precursors when chlorine is added prior to GAC contactors. Water Research, 2020, 184, 116146.	11.3	24
26	Photocatalytic degradation of organic micropollutants: Inhibition mechanisms by different fractions of natural organic matter. Water Research, 2020, 174, 115643.	11.3	90
27	Cellulose particles capture aldehyde VOC pollutants. RSC Advances, 2020, 10, 7967-7975.	3.6	12
28	Mesoporous activated carbon shows superior adsorption affinity for 11-nor-9-carboxy-1°9-tetrahydrocannabinol in water. Npj Clean Water, 2020, 3, .	8.0	5
29	Sorption behavior of real microplastics (MPs): Insights for organic micropollutants adsorption on a large set of well-characterized MPs. Science of the Total Environment, 2020, 720, 137634.	8.0	107
30	Polysulfone-iron acetate/polyamide nanocomposite membrane for oil-water separation. Environmental Nanotechnology, Monitoring and Management, 2020, 14, 100314.	2.9	19
31	Cationic polymer for selective removal of GenX and short-chain PFAS from surface waters and wastewaters at ng/L levels. Water Research, 2019, 163, 114874.	11.3	115
32	Disinfection mechanism of E.Âcoli by CNT-TiO2 composites: Photocatalytic inactivation vs. physical separation. Chemosphere, 2019, 235, 1041-1049.	8.2	25
33	Novel Magnetic Carbon Nanotube-TiO2 Composites for Solar Light Photocatalytic Degradation of Pharmaceuticals in the Presence of Natural Organic Matter. Journal of Water Process Engineering, 2019, 31, 100836.	5.6	58
34	Selective removal of bromide and iodide from natural waters using a novel AgCl-SPAC composite at environmentally relevant conditions. Water Research, 2019, 156, 168-178.	11.3	34
35	Efficient PFAS Removal by Amine-Functionalized Sorbents: Critical Review of the Current Literature. Environmental Science and Technology Letters, 2019, 6, 688-695.	8.7	160
36	The overlooked short- and ultrashort-chain poly- and perfluorinated substances: A review. Chemosphere, 2019, 220, 866-882.	8.2	287

#	Article	lF	CITATIONS
37	Natural organic matter undergoes different molecular sieving by adsorption on activated carbon and carbon nanotubes. Chemosphere, 2018, 203, 345-352.	8.2	59
38	Ozone-assisted regeneration of magnetic carbon nanotubes for removing organic water pollutants. Chemical Engineering Journal, 2018, 335, 384-391.	12.7	37
39	Rapid Removal of Poly- and Perfluorinated Alkyl Substances by Poly(ethylenimine)-Functionalized Cellulose Microcrystals at Environmentally Relevant Conditions. Environmental Science and Technology Letters, 2018, 5, 764-769.	8.7	99
40	Photodegradation of pharmaceuticals and personal care products in water treatment using carbonaceous-TiO2 composites: A critical review of recent literature. Water Research, 2018, 142, 26-45.	11.3	299
41	Rapid Degradation and Mineralization of Perfluorooctanoic Acid by a New Petitjeanite Bi ₃ O(OH)(PO ₄) ₂ Microparticle Ultraviolet Photocatalyst. Environmental Science and Technology Letters, 2018, 5, 533-538.	8.7	109
42	Modeling the Effects of Operational Parameters on Algae Growth., 2017,, 127-139.		3
43	Elucidating Adsorptive Fractions of Natural Organic Matter on Carbon Nanotubes. Environmental Science & Environmental	10.0	92
44	The relationship between molecular composition and fluorescence properties of humic substances. International Journal of Environmental Science and Technology, 2017, 14, 867-880.	3 . 5	21
45	Green and facile approach for enhancing the inherent magnetic properties of carbon nanotubes for water treatment applications. PLoS ONE, 2017, 12, e0180636.	2.5	24
46	Nonlinear Relationship of Near-Bed Velocity and Growth of Riverbed Periphyton. Water (Switzerland), 2016, 8, 461.	2.7	10
47	Artificial intelligence for greywater treatment using electrocoagulation process. Separation Science and Technology, 2016, 51, 96-105.	2.5	40
48	Organic matter removal from saline agricultural drainage wastewater using a moving bed biofilm reactor. Water Science and Technology, 2015, 72, 1327-1333.	2.5	11
49	Impact of water temperature and structural parameters on the hydraulic labyrinth-channel emitter performance. Spanish Journal of Agricultural Research, 2014, 12, 580.	0.6	18