Kun Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4082967/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inkjet-printed TMDC–graphene heterostructures for flexible and broadband photodetectors. Journal of Applied Physics, 2022, 131, .	2.5	3
2	In Situ Ultrafast and Patterned Growth of Transition Metal Dichalcogenides from Inkjetâ€Printed Aqueous Precursors. Advanced Materials, 2021, 33, e2100260.	21.0	36
3	Probing Electronic Properties of CVD Monolayer Hexagonal Boron Nitride by an Atomic Force Microscope. Frontiers in Materials, 2021, 8, .	2.4	2
4	Optimization Strategies for High Photoluminescence Quantum Yield of Monolayer Chemical Vapor Deposition Transition Metal Dichalcogenides. ACS Applied Materials & Interfaces, 2021, 13, 44814-44823.	8.0	4
5	Synthesis and Characterization of Metallic Janus MoSH Monolayer. ACS Nano, 2021, 15, 20319-20331.	14.6	47
6	Towards Scalable Fabrications and Applications of 2D Layered Material-based Vertical and Lateral Heterostructures. Chemical Research in Chinese Universities, 2020, 36, 525-550.	2.6	6
7	1T′ Transition Metal Telluride Atomic Layers for Plasmon-Free SERS at Femtomolar Levels. Journal of the American Chemical Society, 2018, 140, 8696-8704.	13.7	192
8	Graphene controlled Brewster angle device for ultra broadband terahertz modulation. Nature Communications, 2018, 9, 4909.	12.8	117
9	Epitaxial Stitching and Stacking Growth of Atomically Thin Transitionâ€Metal Dichalcogenides (TMDCs) Heterojunctions. Advanced Functional Materials, 2017, 27, 1603884.	14.9	73
10	Controlled Electrochemical Deposition of Largeâ€Area MoS ₂ on Graphene for Highâ€Responsivity Photodetectors. Advanced Functional Materials, 2017, 27, 1603998.	14.9	45
11	Centimeter-Scale CVD Growth of Highly Crystalline Single-Layer MoS ₂ Film with Spatial Homogeneity and the Visualization of Grain Boundaries. ACS Applied Materials & Interfaces, 2017, 9, 12073-12081.	8.0	120
12	A Simple Method for Synthesis of Highâ€Quality Millimeterâ€5cale 1T′ Transitionâ€Metal Telluride and Nearâ€Field Nanooptical Properties. Advanced Materials, 2017, 29, 1700704.	21.0	101
13	Quantitative Analysis of Scattering Mechanisms in Highly Crystalline CVD MoS ₂ through a Self-Limited Growth Strategy by Interface Engineering. Small, 2016, 12, 438-445.	10.0	25
14	Facet-Dependent Property of Sequentially Deposited Perovskite Thin Films: Chemical Origin and Self-Annihilation. ACS Applied Materials & amp; Interfaces, 2016, 8, 32366-32375.	8.0	19
15	Lateral Builtâ€In Potential of Monolayer MoS ₂ –WS ₂ Inâ€Plane Heterostructures by a Shortcut Growth Strategy. Advanced Materials, 2015, 27, 6431-6437.	21.0	191
16	Trapping and assembling of particles and live cells on large-scale random gold nano-island substrates. Scientific Reports, 2015, 5, 9978.	3.3	68
17	Electronic Properties of MoS ₂ –WS ₂ Heterostructures Synthesized with Two-Step Lateral Epitaxial Strategy. ACS Nano, 2015, 9, 9868-9876.	14.6	283
18	Controllable modulation of the electronic properties of graphene and silicene by interface engineering and pressure. Journal of Materials Chemistry C, 2013, 1, 4869.	5.5	28

Kun Chen

#	Article	IF	CITATIONS
19	Quantitative determination of scattering mechanism in large-area graphene on conventional and SAM-functionalized substrates at room temperature. Nanoscale, 2013, 5, 5784.	5.6	27
20	Enhanced Performance and Fermi-Level Estimation of Coronene-Derived Graphene Transistors on Self-Assembled Monolayer Modified Substrates in Large Areas. Journal of Physical Chemistry C, 2013, 117, 4800-4807.	3.1	27
21	High-Quality Large-Area Graphene from Dehydrogenated Polycyclic Aromatic Hydrocarbons. Chemistry of Materials, 2012, 24, 3906-3915.	6.7	119