Selin Sagbas Suner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4082864/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thiourea-Isocyanate-Based Covalent Organic Frameworks with Tunable Surface Charge and Surface Area for Methylene Blue and Methyl Orange Removal from Aqueous Media. Micromachines, 2022, 13, 938.	1.4	5
2	Poli(Rutin) micro/nanogels for biomedical applications. Hittite Journal of Science & Engineering, 2021, 8, 179-187.	0.2	1
3	Improved Biomedical Properties of Polydopamine-Coated Carbon Nanotubes. Micromachines, 2021, 12, 1280.	1.4	11
4	Functionalization of halloysite nanotubes with polyethyleneimine and various ionic liquid forms with antimicrobial activity. Journal of Applied Polymer Science, 2020, 137, 48352.	1.3	17
5	Biocompatible macro, micro and nano scale guar gum hydrogels and their protein absorption capacity. Journal of Macromolecular Science - Pure and Applied Chemistry, 2020, 57, 810-818.	1.2	4
6	Preparation of hyaluronic acid and copolymeric hyaluronic acid: sucrose particles as tunable antibiotic carriers. Journal of Polymer Research, 2020, 27, 1.	1.2	5
7	Delivery of Small Molecule EF2 Kinase Inhibitor for Breast and Pancreatic Cancer Cells Using Hyaluronic Acid Based Nanogels. Pharmaceutical Research, 2020, 37, 63.	1.7	8
8	Hyaluronic acid and hyaluronic acid: Sucrose nanogels for hydrophobic cancer drug delivery. International Journal of Biological Macromolecules, 2019, 126, 1150-1157.	3.6	41
9	Use of Modifified Poly(inulin) Micro/Nanogels in Drug Release and Blood Compatibility Tests. Turkiye Klinikleri Journal of Medical Sciences, 2019, 39, 75-82.	0.1	0
10	Humic acid particle embedded super porous gum Arabic cryogel network for versatile use. Polymers for Advanced Technologies, 2018, 29, 151-159.	1.6	6
11	Superporous hyaluronic acid cryogel composites embedding synthetic polyethyleneimine microgels and Halloysite Nanotubes as natural clay. European Polymer Journal, 2017, 93, 775-784.	2.6	30
12	Polyethyleneimine modified poly(Hyaluronic acid) particles with controllable antimicrobial and anticancer effects. Carbohydrate Polymers, 2017, 159, 29-38.	5.1	53
13	Synthesis, characterization and modification of Gum Arabic microgels for hemocompatibility and antimicrobial studies. Carbohydrate Polymers, 2017, 156, 380-389.	5.1	71
14	P(TA) macro-, micro-, nanoparticle-embedded super porous p(HEMA) cryogels as wound dressing material. Materials Science and Engineering C, 2017, 70, 317-326.	3.8	35
15	Inherently antioxidant and antimicrobial tannic acid release from poly(tannic acid) nanoparticles with controllable degradability. Colloids and Surfaces B: Biointerfaces, 2016, 142, 334-343.	2.5	74
16	Biocompatible and biodegradable poly(Tannic Acid) hydrogel with antimicrobial and antioxidant properties. International Journal of Biological Macromolecules, 2016, 82, 150-159.	3.6	129
17	Very fast catalytic reduction of 4-nitrophenol, methylene blue and eosin Y in natural waters using green chemistry: p(tannic acid)–Cu ionic liquid composites. RSC Advances, 2015, 5, 18183-18195.	1.7	56
18	Single step natural poly(tannic acid) particle preparation as multitalented biomaterial. Materials Science and Engineering C. 2015, 49, 824-834.	3.8	86

#	Article	IF	CITATIONS
19	Modified biofunctional p(tannic acid) microgels and their antimicrobial activity. Applied Surface Science, 2015, 354, 306-313.	3.1	42
20	The use of poly(vinyl phosphonic acid) microgels for the preparation of inherently magnetic Co metal catalyst particles in hydrogen production. Journal of Power Sources, 2014, 246, 55-62.	4.0	59
21	The preparation of poly(vinyl phosphonic acid) hydrogels as new functional materials for in situ metal nanoparticle preparation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 418, 76-83.	2.3	38
22	Modifiable chemically crosslinked poli(κ-carrageenan) particles. Carbohydrate Polymers, 2012, 87, 2718-2724.	5.1	47
23	Porous and modified HA particles as potential drug delivery systems. Microporous and Mesoporous Materials, 2012, 155, 124-130.	2.2	29