
Heiko Bugger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4082851/publications.pdf Version: 2024-02-01

HEIKO RUCCER

#	Article	IF	CITATIONS
1	Molecular mechanisms of diabetic cardiomyopathy. Diabetologia, 2014, 57, 660-671.	2.9	657
2	Mitochondrial Energetics in the Heart in Obesity-Related Diabetes. Diabetes, 2007, 56, 2457-2466.	0.3	524
3	Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H1036-H1047.	1.5	310
4	Contribution of Impaired Myocardial Insulin Signaling to Mitochondrial Dysfunction and Oxidative Stress in the Heart. Circulation, 2009, 119, 1272-1283.	1.6	277
5	Rodent models of diabetic cardiomyopathy. DMM Disease Models and Mechanisms, 2009, 2, 454-466.	1.2	231
6	Mitochondrial Reactive Oxygen Species in Lipotoxic Hearts Induce Post-Translational Modifications of AKAP121, DRP1, and OPA1 That Promote Mitochondrial Fission. Circulation Research, 2018, 122, 58-73.	2.0	225
7	Mitochondria in the diabetic heart. Cardiovascular Research, 2010, 88, 229-240.	1.8	213
8	Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165768.	1.8	195
9	Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure. Cardiovascular Research, 2010, 85, 376-384.	1.8	181
10	Tissue-Specific Remodeling of the Mitochondrial Proteome in Type 1 Diabetic Akita Mice. Diabetes, 2009, 58, 1986-1997.	0.3	175
11	Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association–European Society of Cardiology. European Heart Journal, 2018, 39, 4243-4254.	1.0	171
12	Type 1 Diabetic Akita Mouse Hearts Are Insulin Sensitive but Manifest Structurally Abnormal Mitochondria That Remain Coupled Despite Increased Uncoupling Protein 3. Diabetes, 2008, 57, 2924-2932.	0.3	166
13	Molecular mechanisms for myocardial mitochondrial dysfunction in the metabolic syndrome. Clinical Science, 2008, 114, 195-210.	1.8	165
14	SIRT3 deficiency impairs mitochondrial and contractile function in the heart. Basic Research in Cardiology, 2015, 110, 36.	2.5	157
15	PGC-1β Deficiency Accelerates the Transition to Heart Failure in Pressure Overload Hypertrophy. Circulation Research, 2011, 109, 783-793.	2.0	136
16	Diabetic Cardiomyopathy: Does the Type of Diabetes Matter?. International Journal of Molecular Sciences, 2016, 17, 2136.	1.8	115
17	Empagliflozin protects heart from inflammation and energy depletion via AMPK activation. Pharmacological Research, 2020, 158, 104870.	3.1	113
18	Insulin receptor substrate signaling suppresses neonatal autophagy in the heart. Journal of Clinical Investigation, 2013, 123, 5319-5333.	3.9	106

Heiko Bugger

#	Article	IF	CITATIONS
19	Mitochondrial Mechanisms in Septic Cardiomyopathy. International Journal of Molecular Sciences, 2015, 16, 17763-17778.	1.8	102
20	Platelet Serotonin Aggravates Myocardial Ischemia/Reperfusion Injury via Neutrophil Degranulation. Circulation, 2019, 139, 918-931.	1.6	100
21	Enhanced Cardiac Akt/Protein Kinase B Signaling Contributes to Pathological Cardiac Hypertrophy in Part by Impairing Mitochondrial Function via Transcriptional Repression of Mitochondrion-Targeted Nuclear Genes. Molecular and Cellular Biology, 2015, 35, 831-846.	1.1	84
22	Central Leptin Signaling Is Required to Normalize Myocardial Fatty Acid Oxidation Rates in Caloric-Restricted <i>ob/ob</i> Mice. Diabetes, 2011, 60, 1424-1434.	0.3	81
23	HDAC inhibition improves cardiopulmonary function in a feline model of diastolic dysfunction. Science Translational Medicine, 2020, 12, .	5.8	75
24	Mechanistic Target of Rapamycin (Mtor) Is Essential for Murine Embryonic Heart Development and Growth. PLoS ONE, 2013, 8, e54221.	1.1	74
25	Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radical Biology and Medicine, 2021, 169, 317-342.	1.3	73
26	Mitochondrial Mechanisms in Diabetic Cardiomyopathy. Diabetes and Metabolism Journal, 2020, 44, 33.	1.8	62
27	Adrenergic Repression of the Epigenetic Reader MeCP2 Facilitates Cardiac Adaptation in Chronic Heart Failure. Circulation Research, 2015, 117, 622-633.	2.0	57
28	Insulin Signaling Regulates Mitochondrial Function in Pancreatic Î ² -Cells. PLoS ONE, 2009, 4, e7983.	1.1	57
29	Genetic loss of insulin receptors worsens cardiac efficiency in diabetes. Journal of Molecular and Cellular Cardiology, 2012, 52, 1019-1026.	0.9	56
30	Latent Pulmonary Vascular Disease May Alter the Response to Therapeutic Atrial Shunt Device in Heart Failure. Circulation, 2022, 145, 1592-1604.	1.6	54
31	SIRT3 in Cardiac Physiology and Disease. Frontiers in Cardiovascular Medicine, 2016, 3, 38.	1.1	48
32	Purinergic receptor Y2 (P2Y2)- dependent VCAM-1 expression promotes immune cell infiltration in metabolic syndrome. Basic Research in Cardiology, 2018, 113, 45.	2.5	46
33	Gene expression analysis to identify mechanisms underlying heart failure susceptibility in mice and humans. Basic Research in Cardiology, 2018, 113, 8.	2.5	45
34	Preserved recovery of cardiac function following ischemia–reperfusion in mice lacking SIRT3. Canadian Journal of Physiology and Pharmacology, 2016, 94, 72-80.	0.7	43
35	Mitochondrial sirtuins in the heart. Heart Failure Reviews, 2016, 21, 519-528.	1.7	37
36	Transgenic short-QT syndrome 1 rabbits mimic the human disease phenotype with QT/action potential duration shortening in the atria and ventricles and increased ventricular tachycardia/ventricular fibrillation inducibility. European Heart Journal, 2019, 40, 842-853.	1.0	34

HEIKO BUGGER

#	Article	IF	CITATIONS
37	Impaired SIRT3 activity mediates cardiac dysfunction in endotoxemia by calpain-dependent disruption of ATP synthesis. Journal of Molecular and Cellular Cardiology, 2019, 133, 138-147.	0.9	33
38	Myocardial mitochondrial dysfunction in mice lacking adiponectin receptor 1. Basic Research in Cardiology, 2015, 110, 37.	2.5	32
39	Antioxidant treatment normalizes mitochondrial energetics and myocardial insulin sensitivity independently of changes in systemic metabolic homeostasis in a mouse model of the metabolic syndrome. Journal of Molecular and Cellular Cardiology, 2015, 85, 104-116.	0.9	28
40	Three good reasons for heart surgeons to understand cardiac metabolismâ~†. European Journal of Cardio-thoracic Surgery, 2008, 33, 862-871.	0.6	27
41	Postpartum hormones oxytocin and prolactin cause pro-arrhythmic prolongation of cardiac repolarization in long QT syndrome type 2. Europace, 2019, 21, 1126-1138.	0.7	25
42	Phase-contrast magnet resonance imaging reveals regional, transmural, and base-to-apex dispersion of mechanical dysfunction in patients with long QT syndrome. Heart Rhythm, 2017, 14, 1388-1397.	0.3	24
43	Complications and mortality of cardiovascular emergency admissions during COVID-19 associated restrictive measures. PLoS ONE, 2020, 15, e0239801.	1.1	24
44	Mechanisms of acquired long QT syndrome in patients with propionic academia. Heart Rhythm, 2016, 13, 1335-1345.	0.3	22
45	Visualization of Sirtuin 4 Distribution between Mitochondria and the Nucleus, Based on Bimolecular Fluorescence Self-Complementation. Cells, 2019, 8, 1583.	1.8	20
46	The vulnerable myocardium. Hamostaseologie, 2015, 35, 17-24.	0.9	19
47	Differential changes in respiratory capacity and ischemia tolerance of isolated mitochondria from atrophied and hypertrophied hearts. Metabolism: Clinical and Experimental, 2006, 55, 1097-1106.	1.5	15
48	Diabetes Mellitus and Myocardial Mitochondrial Dysfunction. Heart Failure Clinics, 2012, 8, 551-561.	1.0	15
49	Established and Emerging Mechanisms of Diabetic Cardiomyopathy. Journal of Lipid and Atherosclerosis, 2019, 8, 26.	1.1	14
50	Myocardial Mitochondrial and Contractile Function Are Preserved in Mice Lacking Adiponectin. PLoS ONE, 2015, 10, e0119416.	1.1	11
51	Anti-inflammatory Strategies in Atherosclerosis. Hamostaseologie, 2021, 41, 433-442.	0.9	11
52	Mass Spectrometry-Based Redox and Protein Profiling of Failing Human Hearts. International Journal of Molecular Sciences, 2021, 22, 1787.	1.8	9
53	Animal Models of Dysregulated Cardiac Metabolism. Circulation Research, 2022, 130, 1965-1993.	2.0	9
54	Genetic Deficiency of TRAF5 Promotes Adipose Tissue Inflammation and Aggravates Diet-Induced Obesity in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2563-2574.	1.1	8

Heiko Bugger

#	Article	IF	CITATIONS
55	Cardiomyocyteâ€specific miRâ€100 overexpression preserves heart function under pressure overload in mice and diminishes fatty acid uptake as well as ROS production by direct suppression of Nox4 and CD36. FASEB Journal, 2021, 35, e21956.	0.2	8
56	Subtractive hybridization for differential gene expression in mechanically unloaded rat heart. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2714-H2722.	1.5	7
57	Dysregulation of the Mitochondrial Proteome Occurs in Mice Lacking Adiponectin Receptor 1. Frontiers in Endocrinology, 2019, 10, 872.	1.5	7
58	Mitochondrial-Targeted Therapies Require Mitophagy to Prevent Oxidative Stress Induced by SOD2 Inactivation in Hypertrophied Cardiomyocytes. Antioxidants, 2022, 11, 723.	2.2	7
59	Cellular Heterogeneity of the Heart. Frontiers in Cardiovascular Medicine, 2022, 9, 868466.	1.1	7
60	NAD ⁺ and Vascular Dysfunction: From Mechanisms to Therapeutic Opportunities. Journal of Lipid and Atherosclerosis, 2022, 11, 111.	1.1	7
61	Electro-mechanical (dys-)function in long QT syndrome type 1. International Journal of Cardiology, 2019, 274, 144-151.	0.8	6
62	Interregional electro-mechanical heterogeneity in the rabbit myocardium. Progress in Biophysics and Molecular Biology, 2017, 130, 344-355.	1.4	5
63	Effects of Short Term Adiponectin Receptor Agonism on Cardiac Function and Energetics in Diabetic <i>db/db</i> Mice. Journal of Lipid and Atherosclerosis, 2022, 11, 161.	1.1	5
64	The Cardia Ultraseal Left Atrial Appendage Occluder. JACC: Cardiovascular Interventions, 2019, 12, 1987-1989.	1.1	3
65	Endonuclease G: The Link Between Mitochondria and Cardiac Hypertrophy?. Circulation Research, 2012, 110, 378-380.	2.0	2
66	Alterations in Cardiac Metabolism in Heart Failure. , 2020, , 233-243.e3.		1
67	Circulating Autoantibodies Recognizing Immunodominant Epitopes From Human Apolipoprotein B Associate With Cardiometabolic Risk Factors, but Not With Atherosclerotic Disease. Frontiers in Cardiovascular Medicine, 2022, 9, 826729.	1.1	1
68	The effect of oxygen in Sirt3-mediated myocardial protection: a proof-of-concept study in cultured cardiomyoblasts. Journal of Thrombosis and Thrombolysis, 2018, 46, 102-112.	1.0	0
69	Editorial of Special Issue "Sirtuins in Health and Disease― International Journal of Molecular Sciences, 2021, 22, 5054.	1.8	0
70	The Metabolic Syndrome and Cardiac Function. Advances in Pulmonary Hypertension, 2008, 7, 332-336.	0.1	0