Yoshihiko Ninomiya

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4082813/yoshihiko-ninomiya-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

106 1,796 25 37 h-index g-index citations papers 4.8 109 2,033 5.3 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
106	Effect of the optimal combination of bituminous coal with high biomass content on particulate matter (PM) emissions during co-firing. <i>Fuel</i> , 2022 , 316, 123244	7.1	O
105	Clinker Formation Behavior in a Co-current Up-flowing Moving Bed Gasifier Fueled with Japanese Cedar Pellets. <i>Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy</i> , 2021 , 100, 236-244	0.5	1
104	Effect of Aluminum Oxide Additives for Suppressing Clinker Formation in a Co-current Up-flowing Moving Bed Gasifier Fueled by Japanese Cedar Pellets. <i>Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy</i> , 2021 , 100, 245-253	0.5	1
103	Reaction mechanisms underpinning the removal of Cs from simulated Cs-contaminated ash during thermal treatment with NaCl or KCl. <i>Fuel</i> , 2021 , 289, 119905	7.1	O
102	Do FeCl and FeCl/CaO conditioners change pyrolysis and incineration performances, emissions, and elemental fates of textile dyeing sludge?. <i>Journal of Hazardous Materials</i> , 2021 , 413, 125334	12.8	12
101	Use of thermal treatment with CaCl and CaO to remove Cs in the soil collected from the area near the Fukushima Daiichi Nuclear Power Plant. <i>Journal of Hazardous Materials</i> , 2021 , 401, 123364	12.8	4
100	Prediction of ash-deposition characteristics in co-combustion conditions with CCSEM. <i>The Proceedings of the International Conference on Power Engineering (ICOPE)</i> , 2021 , 2021.15, 2021-0129		
99	Characteristics of iron and sulphur in high-ash lignite (Pakistani lignite) and their influence on long-term T23 tube corrosion under super-critical coal-fired boiler conditions. <i>Fuel</i> , 2020 , 264, 116855	7.1	14
98	Kinetic Study of Long-Term T23 Tube Corrosion upon Low-Rank Coal Ash Deposition under Oxy-Fuel Combustion Conditions. <i>Energy & Energy & 2019</i> , 33, 10209-10217	4.1	1
97	Synergistic Mechanisms of CaCl2 and CaO on the Vaporization of Cs from Cs-Doped Ash during Thermal Treatment. <i>Energy & Doped Science (Section of CaCl2)</i> 8, 32, 5433-5442	4.1	2
96	Effect of kaolin on ash partitioning during combustion of a low-rank coal in O2/CO2 atmosphere. <i>Fuel</i> , 2018 , 222, 538-543	7.1	8
95	Occurrence and characteristics of abundant fine included mineral particles in Collie coal of Western Australia. <i>Fuel</i> , 2018 , 216, 53-60	7.1	5
94	The effect of ceria content in nickelderia composite anode catalysts on the discharge performance for solid oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 2394-2401	6.7	4
93	Partitioning of Lead and Lead Compounds under Gasification-Like Conditions. <i>Energy & Control of Co</i>	4.1	2
92	Influence of methane fuel on terminal voltage of a Ni-GDC anode electrode. <i>The Proceedings of the National Symposium on Power and Energy Systems</i> , 2018 , 2018.23, C121	Ο	
91	Enhancement of Cs vaporization from simulated granular ash through thermal treatment in N2 atmosphere with the addition of a mixture of CaCl2 and CaO. <i>Fuel</i> , 2018 , 214, 409-415	7.1	6
90	Low-temperature trace light-tar reforming in biomass syngas by atmospheric hydrogenation and hydrogenolysis. <i>Fuel Processing Technology</i> , 2018 , 181, 304-310	7.2	3

(2016-2018)

89	synchrotron X-ray fluorescence (SXRF) mapping and micro-XANES: exposure of tubes in oxy-firing flue gas. <i>Journal of Materials Science</i> , 2018 , 53, 11791-11812	4.3		
88	Ignitability and combustibility of Yallourn pyrolysis char under simulated blast furnace conditions. <i>Fuel Processing Technology</i> , 2017 , 156, 113-123	7.2	13	
87	High-throughput optimization of near-infrared-transparent Mo-doped In2O3 thin films with high conductivity by combined use of atmospheric-pressure mist chemical-vapor deposition and sputtering. <i>Thin Solid Films</i> , 2017 , 626, 46-54	2.2	17	
86	Role of CaCl 2 and MgCl 2 addition in the vaporization of water-insoluble cesium from incineration ash during thermal treatment. <i>Chemical Engineering Journal</i> , 2017 , 323, 114-123	14.7	15	
85	High-temperature tube corrosion upon the interaction with Victorian brown coal fly ash under the oxy-fuel combustion condition. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 3941-3948	5.9	11	
84	Zinc nitride as a potential high-mobility transparent conductor. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2017 , 214, 1600472	1.6	8	
83	High-Mobility Transparent p-Type CuI Semiconducting Layers Fabricated on Flexible Plastic Sheets: Toward Flexible Transparent Electronics. <i>Advanced Electronic Materials</i> , 2017 , 3, 1700298	6.4	42	
82	Spatial distribution of chromium on the corroded tube surface characterised by synchrotron X-ray fluorescence (SXRF) mapping and EXANES: Co-existence of Ca-rich ash deposits and oxy-firing flue gas. Fuel Processing Technology, 2017, 167, 31-42	7.2	1	
81	Conduction-band effective mass and bandgap of ZnSnN earth-abundant solar absorber. <i>Scientific Reports</i> , 2017 , 7, 14987	4.9	22	
80	Influence of gaseous SO2 and sulphate-bearing ash deposits on the high-temperature corrosion of heat exchanger tube during oxy-fuel combustion. <i>Fuel Processing Technology</i> , 2017 , 167, 193-204	7.2	15	
79	Effect of silica additive on the high-temperature fireside tube corrosion during the air-firing and oxy-firing of lignite (Xinjiang coal) ICharacteristics of bulk and cross-sectional surfaces for the tubes. <i>Fuel</i> , 2017 , 187, 68-83	7.1	14	
78	Vaporization Behavior of Cs, K, and Na in Cs-Containing Incineration Bottom Ash during Thermal Treatment with CaCl2 and CaO. <i>Energy & Damp; Fuels</i> , 2017 , 31, 14045-14052	4.1	5	
77	Influence of Inherent Moisture on the Formation of Particulate Matter during Low-Rank Coal Combustion. <i>Journal of Chemical Engineering of Japan</i> , 2017 , 50, 351-357	0.8	2	
76	Influence of Ni-CeO2 composition as anode catalyst in a SOFC on discharge performance. <i>The Proceedings of the National Symposium on Power and Energy Systems</i> , 2017 , 2017.22, D131	O		
75	Development of thermal spraying materials through several corrosion tests for heat exchanger tube of incinerators. <i>Fuel Processing Technology</i> , 2016 , 141, 216-224	7.2	15	
74	Current Issues of Ash Deposition and Corrosion on Waste-to-Energy Plant. <i>Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy</i> , 2016 , 95, 1089-1104	0.5	1	
73	Comparative study of electron transport mechanisms in epitaxial and polycrystalline zinc nitride films. <i>Journal of Applied Physics</i> , 2016 , 119, 025104	2.5	23	
72	Study on the species of heavy metals in MSW incineration fly ash and their leaching behavior. <i>Fuel Processing Technology</i> , 2016 , 152, 108-115	7.2	89	

71	Ignitability and Combustibility of Yallourn Pyrolysis Char Blended with Pulverized Coal Injection Coal under Simulated Blast Furnace Conditions. <i>Energy & Description</i> 2016, 30, 1858-1868	4.1	13
70	Influence of Steam, Hydrogen Chloride, and Hydrogen Sulfide on the Release and Condensation of Cadmium in Gasification. <i>Energy & Damp; Fuels</i> , 2016 ,	4.1	5
69	Influence of Steam, Hydrogen Chloride, and Hydrogen Sulfide on the Release and Condensation of Zinc in Gasification. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 6911-6921	3.9	9
68	Ni-CeO2 Nano-composite Anode for Solid Oxide Fuel Cell with ScSZ Electrolyte for Biomass Gasification Fuel Cell Power Generation System. <i>Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy</i> , 2016 , 95, 922-929	0.5	2
67	Truly Transparent p-Type Ecul Thin Films with High Hole Mobility. <i>Chemistry of Materials</i> , 2016 , 28, 4971	- 4 9681	110
66	Vaporization Mechanisms of Water-Insoluble Cs in Ash During Thermal Treatment with Calcium Chloride Addition. <i>Environmental Science & Environmental S</i>	10.3	17
65	Oxygen-Doped Zinc Nitride as a High-Mobility Nitride-Based Semiconductor. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 5327-5333	3.8	34
64	p- to n-Type Conversion and Nonmetal Metal Transition of Lithium-Inserted Cu3N Films. <i>Chemistry of Materials</i> , 2015 , 27, 8076-8083	9.6	32
63	Condensation Behavior of Heavy Metal Vapors upon Flue Gas Cooling in Oxy-fuel versus Air Combustion. <i>Journal of Chemical Engineering of Japan</i> , 2015 , 48, 450-457	0.8	
62	Pilot-scale experimental and CFD modeling investigations of oxy-fuel combustion of Victorian brown coal. <i>Fuel</i> , 2015 , 144, 111-120	7.1	31
61	Transparent conducting zinc nitride films. Japanese Journal of Applied Physics, 2014, 53, 05FX01	1.4	9
60	Effect of H2S concentration in gasified gas on the microstructure and leaching properties of coal slag. <i>Fuel</i> , 2014 , 116, 812-819	7.1	5
59	Rheological evolution and crystallization response of molten coal ash slag at high temperatures. <i>AICHE Journal</i> , 2013 , 59, 2726-2742	3.6	20
58	Effect of inorganic particulates on the condensation behavior of lead and zinc vapors upon flue gas cooling. <i>Proceedings of the Combustion Institute</i> , 2013 , 34, 2821-2829	5.9	21
57	Elucidating the mechanism of Cr(VI) formation upon the interaction with metal oxides during coal oxy-fuel combustion. <i>Journal of Hazardous Materials</i> , 2013 , 261, 260-8	12.8	37
56	A microscopic study of the precipitation of metallic iron in slag from iron-rich coal during high temperature gasification. <i>Fuel</i> , 2013 , 103, 101-110	7.1	20
55	Effect of magnesium additives on PM2.5 reduction during pulverized coal combustion. <i>Fuel Processing Technology</i> , 2013 , 105, 188-194	7.2	20
54	Effect of HCl, SO2 and H2O on the condensation of heavy metal vapors in flue gas cooling section. Fuel Processina Technology. 2013. 105. 181-187	7.2	27

(2009-2013)

53	Effect of coal blending on the leaching characteristics of arsenic in fly ash from fluidized bed coal combustion. <i>Fuel Processing Technology</i> , 2013 , 106, 769-775	7.2	26
52	Condensation Behavior of Heavy Metals during Oxy-fuel Combustion: Deposition, Species Distribution, and Their Particle Characteristics. <i>Energy & Distribution</i> , 27, 5640-5652	4.1	17
51	Effect of Coal Blending on the Leaching Characteristics of Arsenic and Selenium in Fly Ash from Fluidized Bed Coal Combustion 2013 , 569-577		
50	Use of synchrotron XANES and Cr-doped coal to further confirm the vaporization of organically bound Cr and the formation of chromium(VI) during coal oxy-fuel combustion. <i>Environmental Science & Description (Company)</i> 2012, 46, 3567-73	10.3	37
49	Synchrotron-based XANES speciation of chromium in the oxy-fuel fly ash collected from lab-scale drop-tube furnace. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	36
48	Effect of Coal Drying on the Behavior of Inorganic Species during Victorian Brown Coal Pyrolysis and Combustion. <i>Energy & Double Supplements</i> 25, 2764-2771	4.1	14
47	Influence of woody biomass (cedar chip) addition on the emissions of PM10 from pulverised coal combustion. <i>Fuel</i> , 2011 , 90, 77-86	7.1	40
46	Experimental investigation of the combustion of bituminous coal in air and O2/CO2 mixtures: 2. Variation of the transformation behaviour of mineral matter with bulk gas composition. <i>Fuel</i> , 2011 , 90, 1361-1369	7.1	18
45	Ash partitioning during the oxyfuel combustion of lignite and its dependence on the recirculation of flue gas impurities (H2O, HCl and SO2). <i>Fuel</i> , 2011 , 90, 2207-2216	7.1	28
44	An investigation on the heterogeneous nature of mineral matters in Assam (India) coal by CCSEM technique. <i>Fuel Processing Technology</i> , 2011 , 92, 1068-1077	7.2	18
43	Evolution of organically bound metals during coal combustion in air and O2/CO2 mixtures: A case study of Victorian brown coal. <i>Proceedings of the Combustion Institute</i> , 2011 , 33, 2795-2802	5.9	13
42	Effects of HCl, SO2 and H2O in flue gas on the condensation behavior of Pb and Cd vapors in the cooling section of municipal solid waste incineration. <i>Proceedings of the Combustion Institute</i> , 2011 , 33, 2787-2793	5.9	40
41	Effects of Mineral Transformations on the Reduction of PM2.5 during the Combustion of Coal Blends. <i>Advanced Materials Research</i> , 2011 , 356-360, 1306-1314	0.5	1
40	Effect of HCl/SO2/H2O on the Deposition of Heavy Metal Vapors in the Cooling Section of an Incineration Plant. <i>Journal of Chemical Engineering of Japan</i> , 2010 , 43, 713-719	0.8	6
39	Evaluation of a Mg-Based Additive for Particulate Matter (PM)2.5 Reduction during Pulverized Coal Combustion [Interpretation of the Combustion of the Combus	4.1	24
38	Experimental Investigation of the Combustion of Bituminous Coal in Air and O2/CO2 Mixtures: 1. Particle Imaging of the Combustion of Coal and Char. <i>Energy & Energy </i>	4.1	19
37	Characterization of combustion-derived individual fine particulates by computer-controlled scanning electron microscopy. <i>AICHE Journal</i> , 2009 , 55, 3005-3016	3.6	9
36	Effects of coal blending on the reduction of PM10 during high-temperature combustion 2. A coalescence-fragmentation model. <i>Fuel</i> , 2009 , 88, 150-157	7.1	24

35	Kinetic study of chlorine behavior in the waste incineration process. <i>Proceedings of the Combustion Institute</i> , 2009 , 32, 335-342	5.9	10
34	Mineral interactions and their impacts on the reduction of PM10 emissions during co-combustion of coal with sewage sludge. <i>Proceedings of the Combustion Institute</i> , 2009 , 32, 2701-2708	5.9	16
33	Effect of Additives on the Reduction of PM2.5 Emissions during Pulverized Coal Combustion <i>Energy & Energy & En</i>	4.1	35
32	Evaluation of nanosized additives for environmental pollutant reduction during solid fuel combustion. <i>Hosokawa Powder Technology Foundation ANNUAL REPORT</i> , 2009 , 17, 37-42	O	
31	Study of Heavy Metals Condensation by Considering Variant Conditions of Incinerator Cooling Zone 2009 , 434-440		
30	Behavior of Chlorine in HCl/H2O/O2/CO2/N2 Reaction System. <i>Journal of Chemical Engineering of Japan</i> , 2008 , 41, 519-524	0.8	2
29	Elution of Ti during solvent extraction of coal and the transformation of eluted Ti upon combustion. <i>AICHE Journal</i> , 2008 , 54, 1646-1655	3.6	3
28	Properties of water-soluble and insoluble particulate matter emitted from dewatered sewage sludge incineration in a pilot-scale ash melting furnace. <i>Fuel</i> , 2008 , 87, 964-973	7.1	8
27	Coordination structures of organically bound paramagnetic metals in coal and their transformation upon solvent extraction. <i>Fuel</i> , 2008 , 87, 2628-2640	7.1	15
26	Interactions among Inherent Minerals during Coal Combustion and Their Impacts on the Emission of PM10. 2. Emission of Submicrometer-Sized Particles. <i>Energy & Energy & Energy</i>	4.1	18
25	Formation of Submicron Particulates (PM1) from the Oxygen-Enriched Combustion of Dried Sewage Sludge and Their Properties. <i>Energy & Documents</i> , 2007, 21, 88-98	4.1	8
24	Interactions among Inherent Minerals during Coal Combustion and Their Impacts on the Emission of PM10. 1. Emission of Micrometer-Sized Particles. <i>Energy & Emp; Fuels</i> , 2007 , 21, 756-765	4.1	28
23	Transformation of phosphorus during combustion of coal and sewage sludge and its contributions to PM10. <i>Proceedings of the Combustion Institute</i> , 2007 , 31, 2847-2854	5.9	30
22	Investigation of a direct melting dehydrated sewage sludge pilot plant. <i>International Journal of Environment and Pollution</i> , 2007 , 31, 371	0.7	
21	Computer-Controlled Scanning Electron Microscopy (CCSEM) Investigation on the Heterogeneous Nature of Mineral Matter in Six Typical Chinese Coals [Energy & 2007, 21, 468-476]	4.1	35
20	???????????????????. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2007, 15, 140-141	0	
19	Characteristics of slag, fly ash and deposited particles during melting of dewatered sewage sludge in a pilot plant. <i>Journal of Environmental Management</i> , 2006 , 79, 163-72	7.9	12
18	Fundamental Behaviors in Combustion of Raw Sewage Sludge. <i>Energy & amp; Fuels</i> , 2006 , 20, 77-83	4.1	36

LIST OF PUBLICATIONS

17	Occurrence of Inorganic Elements in Condensed Volatile Matter Emitted from Coal Pyrolysis and Their Contributions to the Formation of Ultrafine Particulates during Coal Combustion. <i>Energy & Emp; Fuels</i> , 2006 , 20, 1482-1489	4.1	38
16	Emission of suspended PM10 from laboratory-scale coal combustion and its correlation with coal mineral properties. <i>Fuel</i> , 2006 , 85, 194-203	7.1	60
15	Selective Synthesis of the Iminophosphoranes and Phosphorus Ylides from (Alkylamino)phosphonium Salts. Comparative Study of Electrochemical Reduction with the Base Method. <i>Electrochemistry</i> , 2005 , 73, 798-806	1.2	2
14	Analysis of Coal Ash Build up on Ceramic Filters in a Hot Gas Filtration System. <i>Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy</i> , 2005 , 84, 359-365	0.5	1
13	Sintering Behavior of Coal Ash Build up on Ceramic Filters in a Hot Gas Filtration System. <i>Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy</i> , 2005 , 84, 767-772	0.5	
12	Partitioning of sulfur and calcium during pyrolysis and combustion of high sulfur coals impregnated with calcium acetate as the desulfurization sorbent. <i>Fuel</i> , 2004 , 83, 1039-1053	7.1	15
11	Transformation of mineral and emission of particulate matters during co-combustion of coal with sewage sludge. <i>Fuel</i> , 2004 , 83, 751-764	7.1	56
10	Combustion and DeBOx behavior of high-sulfur coals added with calcium acetate produced from biomass pyroligneous acid. <i>Fuel</i> , 2004 , 83, 2123-2131	7.1	8
9	Influence of coal particle size on particulate matter emission and its chemical species produced during coal combustion. <i>Fuel Processing Technology</i> , 2004 , 85, 1065-1088	7.2	86
8	Combustibility of dried sewage sludge and its mineral transformation at different oxygen content in drop tube furnace. <i>Fuel Processing Technology</i> , 2004 , 85, 983-1011	7.2	20
7	Fate of Alkali Elements during Pyrolysis and Combustion of Chinese Coals <i>Journal of Chemical Engineering of Japan</i> , 2003 , 36, 759-768	0.8	6
6	In situ desulfurization during combustion of high-sulfur coals added with sulfur capture sorbents. <i>Fuel</i> , 2003 , 82, 255-266	7.1	25
5	CCSEM analysis of ash from combustion of coal added with limestone. <i>Fuel</i> , 2002 , 81, 1499-1508	7.1	47
4	Correlation Analyses between the Mobilities on Paper Electrophoresis of Alkysubstituted Phosphonium Ions (RR3′P+). <i>Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal</i> , 2001 , 2001, 91-95		
3	Theoretical study on the thermal decomposition of pyridine. <i>Fuel</i> , 2000 , 79, 449-457	7.1	36
2	Nonlinear Phenomena. Effects of Temperature, O2 Partial Pressure, Initial CaS Content and Particle Diameter on Oxidation Reaction of CaS Particles <i>Kagaku Kogaku Ronbunshu</i> , 1999 , 25, 635-641	0.4	
1	Oxidation Reaction of Calcium Sulfide in an Advanced PFBC Condition. (II). Sulfation Reaction and Grain Model Application. Nihon Energy Gakkaishi/Journal of the Japan Institute of Energy. 1999, 78, 750.	-959	1