
## Nicholas A Peppas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4082328/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                      | IF                | CITATIONS            |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|
| 1  | Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 2021, 20, 101-124.                                                                                                     | 46.4              | 3,154                |
| 2  | Polymers for Drug Delivery Systems. Annual Review of Chemical and Biomolecular Engineering, 2010, 1, 149-173.                                                                                                | 6.8               | 1,205                |
| 3  | Nanocomposite hydrogels for biomedical applications. Biotechnology and Bioengineering, 2014, 111, 441-453.                                                                                                   | 3.3               | 916                  |
| 4  | Stimulus-responsive hydrogels: Theory, modern advances, and applications. Materials Science and Engineering Reports, 2015, 93, 1-49.                                                                         | 31.8              | 811                  |
| 5  | A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics.<br>European Journal of Pharmaceutical Sciences, 2013, 48, 416-427.                                          | 4.0               | 640                  |
| 6  | Synthesis and Characterization of pH- and Temperature-Sensitive Poly(methacrylic) Tj ETQq0 0 0 rgBT /Overlock 2<br>102-107.                                                                                  | 10 Tf 50 5<br>4.8 | 47 Td (acid)/<br>485 |
| 7  | Mathematical models in drug delivery: How modeling has shaped the way we design new drug delivery systems. Journal of Controlled Release, 2014, 190, 75-81.                                                  | 9.9               | 395                  |
| 8  | Analyte-Responsive Hydrogels: Intelligent Materials for Biosensing and Drug Delivery. Accounts of Chemical Research, 2017, 50, 170-178.                                                                      | 15.6              | 386                  |
| 9  | Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices.<br>International Journal of Energy Production and Management, 2018, 5, 197-211.                                      | 3.7               | 368                  |
| 10 | Quantum dots in biomedical applications. Acta Biomaterialia, 2019, 94, 44-63.                                                                                                                                | 8.3               | 310                  |
| 11 | Co-delivery of siRNA and therapeutic agents using nanocarriers to overcome cancer resistance. Nano<br>Today, 2012, 7, 367-379.                                                                               | 11.9              | 292                  |
| 12 | Hydrogels and Scaffolds for Immunomodulation. Advanced Materials, 2014, 26, 6530-6541.                                                                                                                       | 21.0              | 286                  |
| 13 | Current state and challenges in developing oral vaccines. Advanced Drug Delivery Reviews, 2017, 114, 116-131.                                                                                                | 13.7              | 270                  |
| 14 | Responsive Theranostic Systems: Integration of Diagnostic Imaging Agents and Responsive Controlled<br>Release Drug Delivery Carriers. Accounts of Chemical Research, 2011, 44, 1061-1070.                    | 15.6              | 256                  |
| 15 | Dynamic swelling behavior of pH-sensitive anionic hydrogels used for protein delivery. Journal of<br>Applied Polymer Science, 2003, 89, 1606-1613.                                                           | 2.6               | 242                  |
| 16 | Nanoscale technology of mucoadhesive interactions. Advanced Drug Delivery Reviews, 2004, 56, 1675-1687.                                                                                                      | 13.7              | 216                  |
| 17 | Expert opinion: Responsive polymer nanoparticles in cancer therapy. European Journal of<br>Pharmaceutics and Biopharmaceutics, 2012, 80, 241-246.                                                            | 4.3               | 180                  |
| 18 | Novel oral insulin delivery systems based on complexation polymer hydrogels: Single and multiple<br>administration studies in type 1 and 2 diabetic rats. Journal of Controlled Release, 2006, 110, 587-594. | 9.9               | 172                  |

| #  | Article                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Surgical materials: Current challenges and nano-enabled solutions. Nano Today, 2014, 9, 574-589.                                                                                                                                                                      | 11.9 | 158       |
| 20 | The swollen polymer network hypothesis: Quantitative models of hydrogel swelling, stiffness, and solute transport. Progress in Polymer Science, 2020, 105, 101243.                                                                                                    | 24.7 | 152       |
| 21 | Hydrogels for oral delivery of therapeutic proteins. Expert Opinion on Biological Therapy, 2004, 4,<br>881-887.                                                                                                                                                       | 3.1  | 141       |
| 22 | Multi-responsive hydrogels for drug delivery and tissue engineering applications. International<br>Journal of Energy Production and Management, 2014, 1, 57-65.                                                                                                       | 3.7  | 135       |
| 23 | Hydrogel-based biosensors and sensing devices for drug delivery. Journal of Controlled Release, 2016, 240, 142-150.                                                                                                                                                   | 9.9  | 129       |
| 24 | Preparation and Characterization of pH-Responsive Poly(methacrylic acid-g-ethylene glycol)<br>Nanospheres. Macromolecules, 2002, 35, 3668-3674.                                                                                                                       | 4.8  | 128       |
| 25 | Tuning the biomimetic behavior of scaffolds for regenerative medicine through surface modifications. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1275-1293.                                                                                    | 2.7  | 128       |
| 26 | Physicochemical behavior and cytotoxic effects of p(methacrylic acid–g-ethylene glycol) nanospheres<br>for oral delivery of proteins. Journal of Controlled Release, 2002, 80, 197-205.                                                                               | 9.9  | 123       |
| 27 | Protein-Imprinted Polymers: The Shape of Things to Come?. Chemistry of Materials, 2017, 29, 5753-5761.                                                                                                                                                                | 6.7  | 112       |
| 28 | Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Advanced Drug Delivery Reviews, 2020, 167, 170-188.                                                                          | 13.7 | 112       |
| 29 | Enzyme- and pH-Responsive Microencapsulated Nanogels for Oral Delivery of siRNA to Induce TNF-α<br>Knockdown in the Intestine. Biomacromolecules, 2016, 17, 788-797.                                                                                                  | 5.4  | 108       |
| 30 | Designing the new generation of intelligent biocompatible carriers for protein and peptide delivery.<br>Acta Pharmaceutica Sinica B, 2018, 8, 147-164.                                                                                                                | 12.0 | 107       |
| 31 | Nanoscale analysis of protein and peptide absorption: Insulin absorption using complexation and pH-sensitive hydrogels as delivery vehicles. European Journal of Pharmaceutical Sciences, 2006, 29, 183-197.                                                          | 4.0  | 95        |
| 32 | pH-responsive and enzymatically-responsive hydrogel microparticles for the oral delivery of<br>therapeutic proteins: Effects of protein size, crosslinking density, and hydrogel degradation on<br>protein delivery. Journal of Controlled Release, 2016, 221, 18-25. | 9.9  | 95        |
| 33 | Softâ€Nanoparticle Functionalization of Natural Hydrogels for Tissue Engineering Applications.<br>Advanced Healthcare Materials, 2019, 8, e1900506.                                                                                                                   | 7.6  | 95        |
| 34 | A tumor-to-lymph procedure navigated versatile gel system for combinatorial therapy against tumor recurrence and metastasis. Science Advances, 2020, 6, .                                                                                                             | 10.3 | 95        |
| 35 | Intelligent nanoparticles for advanced drug delivery in cancer treatment. Current Opinion in<br>Chemical Engineering, 2015, 7, 84-92.                                                                                                                                 | 7.8  | 90        |
| 36 | Historical perspective on advanced drug delivery: How engineering design and mathematical modeling<br>helped the field mature. Advanced Drug Delivery Reviews, 2013, 65, 5-9.                                                                                         | 13.7 | 88        |

| #  | Article                                                                                                                                                                                                                                                                            | IF              | CITATIONS    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 37 | Intelligent therapeutics: biomimetic systems and nanotechnology in drug delivery. Advanced Drug<br>Delivery Reviews, 2004, 56, 1529-1531.                                                                                                                                          | 13.7            | 83           |
| 38 | A combinational chemo-immune therapy using an enzyme-sensitive nanoplatform for dual-drug delivery to specific sites by cascade targeting. Science Advances, 2021, 7, .                                                                                                            | 10.3            | 81           |
| 39 | Networks for recognition of biomolecules: molecular imprinting and micropatterning poly(ethylene) Tj ETQq1 1                                                                                                                                                                       | 0.784314<br>3.2 | rg&T/Overloc |
| 40 | Label-Free Detection of Tear Biomarkers Using Hydrogel-Coated Gold Nanoshells in a Localized<br>Surface Plasmon Resonance-Based Biosensor. ACS Nano, 2018, 12, 9342-9354.                                                                                                          | 14.6            | 79           |
| 41 | Complexation hydrogels for intestinal delivery of interferon $\hat{I}^2$ and calcitonin. Journal of Controlled Release, 2009, 134, 98-102.                                                                                                                                         | 9.9             | 77           |
| 42 | Micropatterning of biomedical polymer surfaces by novel UV polymerization techniques. Journal of<br>Biomedical Materials Research Part B, 2001, 56, 351-360.                                                                                                                       | 3.1             | 76           |
| 43 | Modular fabrication of intelligent material-tissue interfaces for bioinspired and biomimetic devices.<br>Progress in Materials Science, 2019, 106, 100589.                                                                                                                         | 32.8            | 72           |
| 44 | Messenger RNA-based vaccines: Past, present, and future directions in the context of the COVID-19 pandemic. Advanced Drug Delivery Reviews, 2021, 179, 114000.                                                                                                                     | 13.7            | 71           |
| 45 | Poly(ethylene glycol)-containing Hydrogels for Oral Protein Delivery Applications. Biomedical Microdevices, 2003, 5, 333-341.                                                                                                                                                      | 2.8             | 70           |
| 46 | pH-Responsive poly(itaconic acid-co-N-vinylpyrrolidone) hydrogels with reduced ionic strength<br>loading solutions offer improved oral delivery potential for high isoelectric point-exhibiting<br>therapeutic proteins. International Journal of Pharmaceutics, 2014, 471, 83-91. | 5.2             | 70           |
| 47 | Monodisperse nanoparticles of poly(ethylene glycol) macromers and N-isopropyl acrylamide for<br>biomedical applications. Journal of Applied Polymer Science, 2003, 87, 1678-1684.                                                                                                  | 2.6             | 67           |
| 48 | Molecular Aspects of Mucoadhesive Carrier Development for Drug Delivery and Improved Absorption.<br>Journal of Biomaterials Science, Polymer Edition, 2009, 20, 1-20.                                                                                                              | 3.5             | 66           |
| 49 | Mimicking biological delivery through feedbackâ€controlled drug release systems based on molecular<br>imprinting. AICHE Journal, 2009, 55, 1311-1324.                                                                                                                              | 3.6             | 64           |
| 50 | Synthetic networks with tunable responsiveness, biodegradation, and molecular recognition for precision medicine applications. Science Advances, 2019, 5, eaax7946.                                                                                                                | 10.3            | 64           |
| 51 | Molecular interactions in poly(methacrylic acid)/poly(N-isopropyl acrylamide) interpenetrating polymer networks. Journal of Applied Polymer Science, 2001, 82, 1077-1082.                                                                                                          | 2.6             | 60           |
| 52 | Surface-Modified P(HEMA- <i>co</i> -MAA) Nanogel Carriers for Oral Vaccine Delivery: Design,<br>Characterization, and In Vitro Targeting Evaluation. Biomacromolecules, 2014, 15, 2725-2734.                                                                                       | 5.4             | 59           |
| 53 | Kinetic Gelation Modeling of Controlled Radical Polymerizations. Macromolecules, 2000, 33, 5137-5142.                                                                                                                                                                              | 4.8             | 58           |
| 54 | Temperature-responsive polymer–gold nanocomposites as intelligent therapeutic systems. Journal of<br>Biomedical Materials Research - Part A, 2007, 83A, 692-695.                                                                                                                   | 4.0             | 57           |

| #  | Article                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Preparation and Characterization of P(MAA-g-EG) Nanospheres for Protein Delivery Applications.<br>Journal of Nanoparticle Research, 2002, 4, 73-81.                               | 1.9  | 53        |
| 56 | Biomaterials for Sequestration of Growth Factors and Modulation of Cell Behavior. Advanced Functional Materials, 2020, 30, 1909011.                                               | 14.9 | 51        |
| 57 | Polycationic Nanoparticles for siRNA Delivery: Comparing ARGET ATRP and UV-Initiated Formulations.<br>ACS Nano, 2014, 8, 2908-2917.                                               | 14.6 | 50        |
| 58 | Advanced architectures in the design of responsive polymers for cancer nanomedicine. Journal of<br>Applied Polymer Science, 2018, 135, 46154.                                     | 2.6  | 50        |
| 59 | Engineered microscale hydrogels for drug delivery, cell therapy, and sequencing. Biomedical Microdevices, 2019, 21, 31.                                                           | 2.8  | 50        |
| 60 | Polybasic Nanomatrices Prepared by UV-Initiated Photopolymerization. Macromolecules, 2009, 42, 3391-3398.                                                                         | 4.8  | 44        |
| 61 | Theranostic agents for intracellular gene delivery with spatiotemporal imaging. Nano Today, 2013, 8, 21-38.                                                                       | 11.9 | 44        |
| 62 | Compositional Effects on Network Structure of Highly Cross-Linked Copolymers of PEG-Containing<br>Multiacrylates with Acrylic Acid. Macromolecules, 1999, 32, 6139-6148.          | 4.8  | 40        |
| 63 | Crystal unfolding and chain disentanglement during semicrystalline polymer dissolution. AICHE<br>Journal, 1997, 43, 870-876.                                                      | 3.6  | 39        |
| 64 | A Closer Look at the Impact of Molecular Imprinting on Adsorption Capacity and Selectivity for Protein Templates. Biomacromolecules, 2016, 17, 4045-4053.                         | 5.4  | 37        |
| 65 | Molecularly Imprinted Intelligent Scaffolds for Tissue Engineering Applications. Tissue Engineering -<br>Part B: Reviews, 2017, 23, 27-43.                                        | 4.8  | 37        |
| 66 | Tunable, responsive nanogels containing t-butyl methacrylate and 2-(t-butylamino)ethyl methacrylate.<br>Polymer, 2013, 54, 3784-3795.                                             | 3.8  | 36        |
| 67 | Advanced biomedical hydrogels: molecular architecture and its impact on medical applications.<br>International Journal of Energy Production and Management, 2021, 8, rbab060.     | 3.7  | 36        |
| 68 | Re-evaluating the importance of carbohydrates as regenerative biomaterials. International Journal of<br>Energy Production and Management, 2019, 6, 1-12.                          | 3.7  | 35        |
| 69 | Applications of biomimetic systems in drug delivery. Expert Opinion on Drug Delivery, 2005, 2, 1085-1096.                                                                         | 5.0  | 34        |
| 70 | Synthesis and Properties of Lightly Crosslinked Poly((meth)acrylic acid) Microparticles Prepared by Free Radical Precipitation Polymerization. Polymer Bulletin, 2006, 57, 11-20. | 3.3  | 34        |
| 71 | Novel strategy for the determination of UCST-like microgels network structure: effect on swelling behavior and rheology. Soft Matter, 2012, 8, 337-346.                           | 2.7  | 34        |
| 72 | Charged poly(N-isopropylacrylamide) nanogels for use as differential protein receptors in a turbidimetric sensor array. Analyst, The, 2017, 142, 3183-3193.                       | 3.5  | 34        |

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Enhanced Core Hydrophobicity, Functionalization and Cell Penetration of Polybasic Nanomatrices.<br>Pharmaceutical Research, 2009, 26, 51-60.                                                                                          | 3.5  | 32        |
| 74 | Impact of absorption and transport on intelligent therapeutics and nanoscale delivery of protein therapeutic agents. Chemical Engineering Science, 2009, 64, 4553-4565.                                                               | 3.8  | 32        |
| 75 | Synthesis and characterization of pH-responsive nanoscale hydrogels for oral delivery of<br>hydrophobic therapeutics. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 108, 196-213.                                     | 4.3  | 32        |
| 76 | Complexation hydrogels as potential carriers in oral vaccine delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 112, 138-142.                                                                            | 4.3  | 31        |
| 77 | Transport and delivery of interferon-α through epithelial tight junctions via pH-responsive<br>poly(methacrylic acid-grafted-ethylene glycol) nanoparticles. Journal of Drug Targeting, 2019, 27,<br>582-589.                         | 4.4  | 31        |
| 78 | Poly(acrylic acid)-poly(vinyl alcohol) copolymers with superabsorbent properties. Journal of Applied<br>Polymer Science, 1998, 70, 817-829.                                                                                           | 2.6  | 30        |
| 79 | Vision for Functionally Decorated and Molecularly Imprinted Polymers in Regenerative Engineering.<br>Regenerative Engineering and Translational Medicine, 2017, 3, 166-175.                                                           | 2.9  | 30        |
| 80 | Epitope-imprinted polymers: Design principles of synthetic binding partners for natural biomacromolecules. Science Advances, 2021, 7, eabi9884.                                                                                       | 10.3 | 29        |
| 81 | <i>110th Anniversary</i> : Nanoparticle Mediated Drug Delivery for the Treatment of Alzheimer's<br>Disease: Crossing the Blood–Brain Barrier. Industrial & Engineering Chemistry Research, 2019, 58,<br>15079-15087.                  | 3.7  | 28        |
| 82 | Dynamic swelling behavior of interpenetrating polymer networks in response to temperature and pH.<br>Journal of Applied Polymer Science, 2015, 132, .                                                                                 | 2.6  | 27        |
| 83 | α-Calactosylceramide and peptide-based nano-vaccine synergistically induced a strong tumor<br>suppressive effect in melanoma. Acta Biomaterialia, 2018, 76, 193-207.                                                                  | 8.3  | 27        |
| 84 | Miniaturized Needle Arrayâ€Mediated Drug Delivery Accelerates Wound Healing. Advanced Healthcare<br>Materials, 2021, 10, e2001800.                                                                                                    | 7.6  | 27        |
| 85 | Kinetics of Copolymerization of PEG-Containing Multiacrylates with Acrylic Acid. Macromolecules, 1999, 32, 6149-6158.                                                                                                                 | 4.8  | 26        |
| 86 | Complexation Hydrogels as Oral Delivery Vehicles of Therapeutic Antibodies: An in Vitro and ex Vivo<br>Evaluation of Antibody Stability and Bioactivity. Industrial & Engineering Chemistry Research, 2015,<br>54, 10197-10205.       | 3.7  | 26        |
| 87 | Combination Strategy with Complexation Hydrogels and Cell-Penetrating Peptides for Oral Delivery of Insulin. Biological and Pharmaceutical Bulletin, 2018, 41, 811-814.                                                               | 1.4  | 25        |
| 88 | Immobilization of nanocarriers within a porous chitosan scaffold for the sustained delivery of<br>growth factors in bone tissue engineering applications. Journal of Biomedical Materials Research -<br>Part A, 2020, 108, 1122-1135. | 4.0  | 25        |
| 89 | Intelligent recognitive systems in nanomedicine. Current Opinion in Chemical Engineering, 2014, 4, 105-113.                                                                                                                           | 7.8  | 23        |
|    |                                                                                                                                                                                                                                       |      |           |

Relaxational behavior and swelling-pH master curves of poly[(diethylaminoethyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf  $50_{3.1}^{50}$  62 Td (methacrylaminoethyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf  $3.1_{21}^{50}$  62 Td (methacrylaminoethyl)

| #   | Article                                                                                                                                                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Insulin release dynamics from poly(diethylaminoethyl methacrylate) hydrogel systems. AICHE Journal, 2013, 59, 3578-3585.                                                                                                                                                                                                                                                                              | 3.6  | 21        |
| 92  | Tunable poly(methacrylic acidâ€coâ€acrylamide) nanoparticles through inverse emulsion polymerization.<br>Journal of Biomedical Materials Research - Part A, 2018, 106, 1677-1686.                                                                                                                                                                                                                     | 4.0  | 21        |
| 93  | Molecular recognition with soft biomaterials. Soft Matter, 2020, 16, 856-869.                                                                                                                                                                                                                                                                                                                         | 2.7  | 21        |
| 94  | Epitopeâ€Imprinted Nanoparticles as Transforming Growth Factorâ€Î²3 Sequestering Ligands to Modulate<br>Stem Cell Fate. Advanced Functional Materials, 2021, 31, 2003934.                                                                                                                                                                                                                             | 14.9 | 21        |
| 95  | Solute Transport Dependence on 3D Geometry of Hydrogel Networks. Macromolecular Chemistry and Physics, 2021, 222, 2100138.                                                                                                                                                                                                                                                                            | 2.2  | 21        |
| 96  | Overcoming barriers in non-viral gene delivery for neurological applications. Nanoscale, 2022, 14, 3698-3719.                                                                                                                                                                                                                                                                                         | 5.6  | 21        |
| 97  | Cytoplasmic delivery of functional siRNA using pH-Responsive nanoscale hydrogels. International<br>Journal of Pharmaceutics, 2019, 562, 249-257.                                                                                                                                                                                                                                                      | 5.2  | 20        |
| 98  | QCMâ€D assay for quantifying the swelling, biodegradation, and protein adsorption of intelligent nanogels. Journal of Applied Polymer Science, 2020, 137, 48655.                                                                                                                                                                                                                                      | 2.6  | 20        |
| 99  | Bioadhesives for Optimization of Drug Delivery. Journal of Drug Targeting, 1995, 3, 183-184.                                                                                                                                                                                                                                                                                                          | 4.4  | 19        |
| 100 | Multiresponsive polyanionic microgels with inverse pH responsive behavior by encapsulation of polycationic nanogels. Journal of Applied Polymer Science, 2014, 131, .                                                                                                                                                                                                                                 | 2.6  | 19        |
| 101 | Student award for outstanding research winner in the Ph.D. category for the 2017 society for biomaterials annual meeting and exposition, april 5–8, 2017, Minneapolis, Minnesota: Characterization of protein interactions with molecularly imprinted hydrogels that possess engineered affinity for high isoelectric point biomarkers. Journal of Biomedical Materials Research - Part A, 2017, 105, | 4.0  | 19        |
| 102 | Effect of network mesh size and swelling to the drug delivery from pH responsive hydrogels. Journal of Applied Polymer Science, 2020, 137, 48767.                                                                                                                                                                                                                                                     | 2.6  | 19        |
| 103 | Lipid- and polymer-based nanoparticle systems for the delivery of CRISPR/Cas9. Journal of Drug Delivery Science and Technology, 2021, 65, 102728.                                                                                                                                                                                                                                                     | 3.0  | 19        |
| 104 | Glucose recognition capabilities of hydroxyethyl methacrylate-based hydrogels containing poly(ethylene glycol) chains. Journal of Applied Polymer Science, 2007, 103, 432-441.                                                                                                                                                                                                                        | 2.6  | 18        |
| 105 | The challenge to improve the response of biomaterials to the physiological environment.<br>International Journal of Energy Production and Management, 2016, 3, 67-71.                                                                                                                                                                                                                                 | 3.7  | 18        |
| 106 | Innovations in Biomaterial Design toward Successful RNA Interference Therapy for Cancer Treatment.<br>Advanced Healthcare Materials, 2021, 10, e2100350.                                                                                                                                                                                                                                              | 7.6  | 18        |
| 107 | Biomimetic materials and micropatterned structures using iniferters. Advanced Drug Delivery<br>Reviews, 2004, 56, 1587-1597.                                                                                                                                                                                                                                                                          | 13.7 | 17        |
| 108 | High-Throughput FRAP Analysis of Solute Diffusion in Hydrogels. Macromolecules, 2021, 54,<br>10477-10486.                                                                                                                                                                                                                                                                                             | 4.8  | 17        |

| #   | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Effect of monomer type and dangling end size on polymer network synthesis. Journal of Applied<br>Polymer Science, 2003, 89, 3506-3519.                                                                                                  | 2.6  | 16        |
| 110 | In Vitro Evaluation of pH-Responsive Nanoscale Hydrogels for the Oral Delivery of Hydrophobic<br>Therapeutics. Industrial & Engineering Chemistry Research, 2016, 55, 10576-10590.                                                      | 3.7  | 16        |
| 111 | Development of a P((MAAâ€ <i>co</i> â€NVP)â€gâ€EG) Hydrogel Platform for Oral Protein Delivery: Effects of<br>Hydrogel Composition on Environmental Response and Protein Partitioning. Macromolecular<br>Bioscience, 2017, 17, 1600266. | 4.1  | 16        |
| 112 | Recent Advances in Smart Biomaterials for the Detection and Treatment of Autoimmune Diseases.<br>Advanced Functional Materials, 2020, 30, 1909556.                                                                                      | 14.9 | 16        |
| 113 | Preparation and properties of poly(ethylene oxide) star polymers. Journal of Applied Polymer Science, 2003, 87, 322-327.                                                                                                                | 2.6  | 15        |
| 114 | Design of pH-Responsive Biomaterials to Enable the Oral Route of Hematological Factor IX. Annals of<br>Biomedical Engineering, 2016, 44, 1970-1982.                                                                                     | 2.5  | 15        |
| 115 | 3D cell-laden polymers to release bioactive products in the eye. Progress in Retinal and Eye Research, 2019, 68, 67-82.                                                                                                                 | 15.5 | 15        |
| 116 | Control of cationic nanogel PEGylation in heterogeneous ARGET ATRP emulsion polymerization with PEG macromonomers. Journal of Polymer Science Part A, 2018, 56, 1536-1544.                                                              | 2.3  | 14        |
| 117 | CRISPR/Cas systems to overcome challenges in developing the next generation of T cells for cancer therapy. Advanced Drug Delivery Reviews, 2020, 158, 17-35.                                                                            | 13.7 | 14        |
| 118 | Polymer composition primarily determines the protein recognition characteristics of molecularly imprinted hydrogels. Journal of Materials Chemistry B, 2020, 8, 7685-7695.                                                              | 5.8  | 13        |
| 119 | Cytocompatibility, membrane disruption, and siRNA delivery using environmentally responsive cationic nanogels. Journal of Controlled Release, 2021, 332, 608-619.                                                                       | 9.9  | 13        |
| 120 | Biodegradable hydrophilic carriers for the oral delivery of hematological factor IX for hemophilia B<br>treatment. International Journal of Pharmaceutics, 2016, 514, 220-228.                                                          | 5.2  | 12        |
| 121 | Optimization of Cationic Nanogel PEGylation to Achieve Mammalian Cytocompatibility with Limited Loss of Gram-Negative Bactericidal Activity. Biomacromolecules, 2020, 21, 1528-1538.                                                    | 5.4  | 12        |
| 122 | Electrostatic and Covalent Assemblies of Anionic Hydrogel-Coated Gold Nanoshells for Detection of<br>Dry Eye Biomarkers in Human Tears. Nano Letters, 2021, 21, 8734-8740.                                                              | 9.1  | 12        |
| 123 | Temperature- and pH- Sensitive Hydrogels for Controlled Release of Antithrombotic Agents. Materials<br>Research Society Symposia Proceedings, 1993, 331, 211.                                                                           | 0.1  | 11        |
| 124 | Degradable Poly(Methyl Methacrylate)-co-Methacrylic Acid Nanoparticles for Controlled Delivery of<br>Growth Factors for Bone Regeneration. Tissue Engineering - Part A, 2020, 26, 1226-1242.                                            | 3.1  | 11        |
| 125 | Developing a Multidisciplinary Approach for Engineering Stem Cell Organoids. Annals of Biomedical<br>Engineering, 2020, 48, 1895-1904.                                                                                                  | 2.5  | 10        |
| 126 | Novel Bioadhesive Complexation Networks for Oral Protein Drug Delivery. ACS Symposium Series, 1998, , 156-164.                                                                                                                          | 0.5  | 9         |

8

| #   | Article                                                                                                                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Amphiphilic Interpenetrating Polymer Networks for the Oral Delivery of Chemotherapeutics. AICHE<br>Journal, 2013, 59, 1472-1478.                                                                                                                                                                                                                                                      | 3.6 | 9         |
| 128 | Student Award for Outstanding Research Winner in the Undergraduate Category for the 2017 Society<br>for Biomaterials Annual Meeting and Exposition, April 5–8, 2017, Minneapolis, Minnesota: Development<br>and characterization of stimuliâ€responsive hydrogel microcarriers for oral protein delivery. Journal<br>of Biomedical Materials Research - Part A, 2017, 105, 1243-1251. | 4.0 | 9         |
| 129 | Cell-laden alginate hydrogels for the treatment of diabetes. Expert Opinion on Drug Delivery, 2020, 17, 1113-1118.                                                                                                                                                                                                                                                                    | 5.0 | 9         |
| 130 | Recent advances in hemophilia B therapy. Drug Delivery and Translational Research, 2017, 7, 359-371.                                                                                                                                                                                                                                                                                  | 5.8 | 8         |
| 131 | Peptide conjugation enhances the cellular co-localization, but not endosomal escape, of modular<br>poly(acrylamide-co-methacrylic acid) nanogels. Journal of Controlled Release, 2021, 329, 1162-1171.                                                                                                                                                                                | 9.9 | 8         |
| 132 | Network structure and methanol transport dynamics in poly(methyl methacrylate). AICHE Journal, 2012, 58, 1600-1609.                                                                                                                                                                                                                                                                   | 3.6 | 7         |
| 133 | Surface hydrolysis-mediated PEGylation of poly(N-isopropyl acrylamide) based nanogels. International<br>Journal of Energy Production and Management, 2017, 4, 281-287.                                                                                                                                                                                                                | 3.7 | 7         |
| 134 | Poly(Methacrylic Acid-g-Ethylene Glycol) Hydrogels as pH Responsive Biomedical Materials. Materials<br>Research Society Symposia Proceedings, 1993, 331, 199.                                                                                                                                                                                                                         | 0.1 | 5         |
| 135 | Structure, Testing, and Applications of Biomaterials. Advances in Chemistry Series, 1982, , 465-473.                                                                                                                                                                                                                                                                                  | 0.6 | 4         |
| 136 | Recent advancements in biosensing approaches for screening and diagnostic applications. Current Opinion in Biomedical Engineering, 2021, 19, 100318.                                                                                                                                                                                                                                  | 3.4 | 4         |
| 137 | Micropatterning of biomedical polymer surfaces by novel UV polymerization techniques. Journal of<br>Biomedical Materials Research Part B, 2001, 56, 351-360.                                                                                                                                                                                                                          | 3.1 | 3         |
| 138 | NMR spectroscopy and free volume analysis of the effects of copolymer composition on the swelling kinetics and chain dynamics of highly crosslinked copolymers of acrylic acid with PEG-containing multiacrylates. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 1953-1968.                                                                                          | 2.1 | 2         |
| 139 | Influence of extracellular cues of hydrogel biomaterials on stem cell fate. Journal of Biomaterials<br>Science, Polymer Edition, 2022, 33, 1324-1347.                                                                                                                                                                                                                                 | 3.5 | 2         |
| 140 | Dynamic Swelling of Ionic Networks. ACS Symposium Series, 1994, , 40-49.                                                                                                                                                                                                                                                                                                              | 0.5 | 1         |
| 141 | Molecular Simulations of Recognitive Polymer Networks Prepared by Biomimetic Configurational<br>Imprinting as Responsive Biomaterials. Materials Research Society Symposia Proceedings, 2003, 787, 211.                                                                                                                                                                               | 0.1 | 1         |
| 142 | Chemistry and properties of crosslinked polymers, edited by S. S. Labana, Academic Press, New York,<br>1977, xiii+ 581 pages,\$29.50. AICHE Journal, 1977, 23, 958-958.                                                                                                                                                                                                               | 3.6 | 0         |
| 143 | Novel Preparation of Poly(Vinyl Alcohol) Microparticles without Crosslinking Agent for Controlled<br>Drug Delivery. Materials Research Society Symposia Proceedings, 1993, 331, 223.                                                                                                                                                                                                  | 0.1 | 0         |
| 144 | Controlled Release of Trimaterene from Poly(DL-Lactide-Co-Glycolide) Microspheres. Materials<br>Research Society Symposia Proceedings, 1993, 331, 91.                                                                                                                                                                                                                                 | 0.1 | 0         |

| #   | Article                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Solid-State NMR Spectroscopy for Characterization of Acrylate Reactions. ACS Symposium Series, 1997, , 28-34.                   | 0.5 | 0         |
| 146 | Novel Ionogenic Acrylate Copolymer Networks for Sustained Solute Delivery. ACS Symposium Series, 1998, , 129-142.               | 0.5 | 0         |
| 147 | The 2015 Young Innovators of Cellular and Molecular Bioengineering. Cellular and Molecular<br>Bioengineering, 2015, 8, 305-306. | 2.1 | 0         |