Hiaying Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4082179/publications.pdf

Version: 2024-02-01

1040056 996975 24 577 9 15 citations h-index g-index papers 24 24 24 860 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	In utero CRISPR-mediated therapeutic editing of metabolic genes. Nature Medicine, 2018, 24, 1513-1518.	30.7	169
2	Ionizable lipid nanoparticles for in utero mRNA delivery. Science Advances, 2021, 7, .	10.3	110
3	In utero gene editing for monogenic lung disease. Science Translational Medicine, 2019, $11,\ldots$	12.4	83
4	Complete tissue coverage achieved by scaffold-based tissue engineering in the fetal sheep model of Myelomeningocele. Biomaterials, 2016, 76, 133-143.	11.4	54
5	The Intravenous Route of Injection Optimizes Engraftment and Survival in the Murine Model of In Utero Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 2016, 22, 991-999.	2.0	33
6	In utero adenine base editing corrects multi-organ pathology in a lethal lysosomal storage disease. Nature Communications, 2021, 12, 4291.	12.8	32
7	Enhanced in utero allogeneic engraftment in mice after mobilizing fetal HSCs by $\hat{l}\pm4\hat{l}^21/7$ inhibition. Blood, 2016, 128, 2457-2461.	1.4	26
8	Donor cell engineering with GSK3 inhibitor–loaded nanoparticles enhances engraftment after in utero transplantation. Blood, 2019, 134, 1983-1995.	1.4	13
9	In Utero Transplantation of Expanded Autologous Amniotic Fluid Stem Cells Results in Long-Term Hematopoietic Engraftment. Stem Cells, 2019, 37, 1176-1188.	3.2	13
10	Regulatory T cells promote alloengraftment in a model of late-gestation in utero hematopoietic cell transplantation. Blood Advances, 2020, 4, 1102-1114.	5.2	12
11	Pre-Existing Maternal Antibodies Cause Rapid Prenatal Rejection of Allotransplants in the Mouse Model of In Utero Hematopoietic Cell Transplantation. Journal of Immunology, 2018, 201, 1549-1557.	0.8	10
12	The EXTrauterine Environment for Neonatal Development Supports Normal Intestinal Maturation and Development. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 623-637.	4.5	8
13	Addition of glycerol enhances the flexibility of gelatin hydrogel sheets; application for in utero tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 921-931.	3.4	8
14	Preclinical Canine Model of Graft-versus-Host Disease after In Utero Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 2018, 24, 1795-1801.	2.0	5
15	Hematopoietic Engraftment of Amniotic Fluid Stem Cells Following in Utero Transplantation. Blood, 2014, 124, 3809-3809.	1.4	1
16	Consistent Achievement of Improved Levels of Hematopoietic Chimerism in the Canine Model Following Optimization of Haploidentical In Utero Transplantation. Blood, 2011, 118, 2962-2962.	1.4	0
17	Preconditioning with AMD3100 Mobilization Promotes Homing and Long-Term Engraftment of Hematopoietic Stem Cells During Syngeneic Transplantation in the Murine Model. Blood, 2012, 120, 1886-1886.	1.4	0
18	A Preclinical Canine Model of in Utero Hematopoietic Cell Transplantation–Induced Graft Vs. Host Disease Blood, 2012, 120, 3002-3002.	1.4	O

#	Article	IF	CITATIONS
19	Altered Thymocyte Development in Allogeneic in Utero Hematopoietic Cell Transplantation in the Mouse Model. Blood, 2012, 120, 4668-4668.	1.4	o
20	Cell Engineering with Glycogen Synthase Kinase-3 Beta Inhibitor-Loaded Synthetic Nanoparticles Enhances Hematopoietic Engraftment of Bone Marrow Mononuclear Cells Following in Utero Transplantation. Blood, 2014, 124, 2414-2414.	1.4	0
21	The Use of Eicosanoids to Enhance Donor Cell Engraftment after in Utero Hematopoietic Cell Transplantation (IUHCT). Blood, 2015, 126, 35-35.	1.4	O
22	The Intravenous Route Optimizes Engraftment and Survival in the Murine Model of in Utero Hematopoietic Cell Transplantation (IUHCT). Blood, 2015, 126, 1871-1871.	1.4	0
23	In Utero Hematopoietic Cell Transplantation Induces Peripheral Tolerance By Upregulating Two Types of Nontraditional Regulatory T Cells. Blood, 2015, 126, 5413-5413.	1.4	O
24	Characterizing and Augmenting Peripheral Tolerance in in Utero Hematopoietic Cell Transplantation. Blood, 2016, 128, 4540-4540.	1.4	0