


List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4082127/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Imparting functionality to a metal–organic framework material by controlled nanoparticle<br>encapsulation. Nature Chemistry, 2012, 4, 310-316.                                                  | 6.6  | 1,857     |
| 2  | Brewery wastewater treatment using air-cathode microbial fuel cells. Applied Microbiology and Biotechnology, 2008, 78, 873-880.                                                                 | 1.7  | 545       |
| 3  | Selective Electrochemical H <sub>2</sub> O <sub>2</sub> Production through Twoâ€Electron Oxygen<br>Electrochemistry. Advanced Energy Materials, 2018, 8, 1801909.                               | 10.2 | 498       |
| 4  | Use of Carbon Mesh Anodes and the Effect of Different Pretreatment Methods on Power Production<br>in Microbial Fuel Cells. Environmental Science & Technology, 2009, 43, 6870-6874.             | 4.6  | 486       |
| 5  | Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial<br>fuel cells. Journal of Power Sources, 2010, 195, 1841-1844.                                   | 4.0  | 466       |
| 6  | A novel structure of scalable air-cathode without Nafion and Pt by rolling activated carbon and PTFE as catalyst layer in microbial fuel cells. Water Research, 2012, 46, 5777-5787.            | 5.3  | 383       |
| 7  | Separator Characteristics for Increasing Performance of Microbial Fuel Cells. Environmental Science<br>& Technology, 2009, 43, 8456-8461.                                                       | 4.6  | 291       |
| 8  | A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment.<br>Bioresource Technology, 2014, 156, 132-138.                                               | 4.8  | 237       |
| 9  | Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide. Nature Catalysis, 2019, 2, 889-898.                                                      | 16.1 | 234       |
| 10 | Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using Uâ€ŧube<br>microbial fuel cells. Biotechnology and Bioengineering, 2012, 109, 426-433.                 | 1.7  | 232       |
| 11 | The feasibility and challenges of energy self-sufficient wastewater treatment plants. Applied Energy, 2017, 204, 1463-1475.                                                                     | 5.1  | 228       |
| 12 | Well-Dispersed Ruthenium in Mesoporous Crystal TiO <sub>2</sub> as an Advanced Electrocatalyst for Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2018, 140, 5719-5727. | 6.6  | 224       |
| 13 | Accelerated start-up of two-chambered microbial fuel cells: Effect of anodic positive poised potential.<br>Electrochimica Acta, 2009, 54, 1109-1114.                                            | 2.6  | 219       |
| 14 | Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosensors and Bioelectronics, 2010, 25, 2639-2643.                                       | 5.3  | 214       |
| 15 | Catalysis Kinetics and Porous Analysis of Rolling Activated Carbon-PTFE Air-Cathode in Microbial Fuel<br>Cells. Environmental Science & Technology, 2012, 46, 13009-13015.                      | 4.6  | 204       |
| 16 | Ethylene Selectivity in Electrocatalytic CO <sub>2</sub> Reduction on Cu Nanomaterials: A Crystal Phase-Dependent Study. Journal of the American Chemical Society, 2020, 142, 12760-12766.      | 6.6  | 183       |
| 17 | Electricity production from beer brewery wastewater using single chamber microbial fuel cell. Water Science and Technology, 2008, 57, 1117-1121.                                                | 1.2  | 177       |
| 18 | Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control. Bioresource Technology, 2012, 106, 89-94.            | 4.8  | 159       |

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Bioaugmentation for Electricity Generation from Corn Stover Biomass Using Microbial Fuel Cells.<br>Environmental Science & Technology, 2009, 43, 6088-6093.                                                | 4.6 | 149       |
| 20 | Enhanced performance and capacitance behavior of anode by rolling Fe3O4 into activated carbon in microbial fuel cells. Bioresource Technology, 2012, 121, 450-453.                                         | 4.8 | 146       |
| 21 | Polyaniline networks grown on graphene nanoribbons-coated carbon paper with a synergistic effect for high-performance microbial fuel cells. Journal of Materials Chemistry A, 2013, 1, 12587.              | 5.2 | 138       |
| 22 | Highly efficient electro-generation of H2O2 by adjusting liquid-gas-solid three phase interfaces of porous carbonaceous cathode during oxygen reduction reaction. Water Research, 2019, 164, 114933.       | 5.3 | 113       |
| 23 | Electric field induced salt precipitation into activated carbon air-cathode causes power decay in microbial fuel cells. Water Research, 2017, 123, 369-377.                                                | 5.3 | 106       |
| 24 | Treatment of biodiesel production wastes with simultaneous electricity generation using a single-chamber microbial fuel cell. Bioresource Technology, 2011, 102, 411-415.                                  | 4.8 | 103       |
| 25 | Concentration responses of toxicity sensor with Shewanella oneidensis MR-1 growing in bioelectrochemical systems. Biosensors and Bioelectronics, 2013, 43, 264-267.                                        | 5.3 | 102       |
| 26 | A novel carbon black graphite hybrid air-cathode for efficient hydrogen peroxide production in bioelectrochemical systems. Journal of Power Sources, 2016, 306, 495-502.                                   | 4.0 | 102       |
| 27 | Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells. Biosensors and Bioelectronics, 2016, 85, 135-141.                                                                            | 5.3 | 101       |
| 28 | Sand amendment enhances bioelectrochemical remediation of petroleum hydrocarbon contaminated soil. Chemosphere, 2015, 141, 62-70.                                                                          | 4.2 | 99        |
| 29 | Continuous electricity generation by a graphite granule baffled air–cathode microbial fuel cell.<br>Bioresource Technology, 2010, 101, 632-638.                                                            | 4.8 | 98        |
| 30 | Photocatalytically improved azo dye reduction in a microbial fuel cell with rutile-cathode.<br>Bioresource Technology, 2010, 101, 3500-3505.                                                               | 4.8 | 95        |
| 31 | Effect of nitrogen addition on the performance of microbial fuel cell anodes. Bioresource<br>Technology, 2011, 102, 395-398.                                                                               | 4.8 | 93        |
| 32 | Polydopamine as a new modification material to accelerate startup and promote anode performance in microbial fuel cells. Journal of Power Sources, 2017, 343, 477-482.                                     | 4.0 | 93        |
| 33 | Superhydrophobic Air-Breathing Cathode for Efficient Hydrogen Peroxide Generation through<br>Two-Electron Pathway Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2019, 11,<br>35410-35419. | 4.0 | 92        |
| 34 | Acidic and alkaline pretreatments of activated carbon and their effects on the performance of air-cathodes in microbial fuel cells. Bioresource Technology, 2013, 144, 632-636.                            | 4.8 | 91        |
| 35 | Enhanced performance of activated carbon–polytetrafluoroethylene air-cathode by avoidance of sintering on catalyst layer in microbial fuelÂcells. Journal of Power Sources, 2013, 232, 132-138.            | 4.0 | 87        |
| 36 | Nanostructured Graphene/TiO <sub>2</sub> Hybrids as Highâ€Performance Anodes for Microbial Fuel<br>Cells. Chemistry - A European Journal, 2014, 20, 7091-7097.                                             | 1.7 | 87        |

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Enhanced biodegradation of aged petroleum hydrocarbons in soils by glucose addition in microbial fuel cells. Journal of Chemical Technology and Biotechnology, 2016, 91, 267-275.               | 1.6 | 86        |
| 38 | Lack of anodic capacitance causes power overshoot in microbial fuel cells. Bioresource Technology, 2013, 138, 353-358.                                                                          | 4.8 | 83        |
| 39 | Application of nitrogen-doped carbon powders as low-cost and durable cathodic catalyst to<br>air–cathode microbial fuel cells. Bioresource Technology, 2012, 108, 89-93.                        | 4.8 | 81        |
| 40 | Surfactants selectively reallocated the bacterial distribution in soil bioelectrochemical remediation of petroleum hydrocarbons. Journal of Hazardous Materials, 2018, 344, 23-32.              | 6.5 | 80        |
| 41 | Use of a Coculture To Enable Current Production by Geobacter sulfurreducens. Applied and Environmental Microbiology, 2012, 78, 3484-3487.                                                       | 1.4 | 78        |
| 42 | Extended petroleum hydrocarbon bioremediation in saline soil using Pt-free multianodes microbial<br>fuel cells. RSC Advances, 2014, 4, 59803-59808.                                             | 1.7 | 76        |
| 43 | Simultaneous wastewater treatment and energy harvesting in microbial fuel cells: an update on the biocatalysts. RSC Advances, 2020, 10, 25874-25887.                                            | 1.7 | 75        |
| 44 | Enhanced anode performance of microbial fuel cells by adding nanosemiconductor goethite. Journal of Power Sources, 2013, 223, 94-99.                                                            | 4.0 | 73        |
| 45 | Opening size optimization of metal matrix in rolling-pressed activated carbon air–cathode for<br>microbial fuel cells. Applied Energy, 2014, 123, 13-18.                                        | 5.1 | 72        |
| 46 | Bioelectrochemical Ammoniation Coupled with Microbial Electrolysis for Nitrogen Recovery from Nitrate in Wastewater. Environmental Science & Technology, 2020, 54, 3002-3011.                   | 4.6 | 71        |
| 47 | Active H <sub>2</sub> Harvesting Prevents Methanogenesis in Microbial Electrolysis Cells.<br>Environmental Science and Technology Letters, 2016, 3, 286-290.                                    | 3.9 | 70        |
| 48 | Acetate limitation selects Geobacter from mixed inoculum and reduces polysaccharide in electroactive biofilm. Water Research, 2020, 177, 115776.                                                | 5.3 | 70        |
| 49 | Microbial Fuel Cells for Organic ontaminated Soil Remedial Applications: A Review. Energy<br>Technology, 2017, 5, 1156-1164.                                                                    | 1.8 | 69        |
| 50 | Horizontal arrangement of anodes of microbial fuel cells enhances remediation of petroleum<br>hydrocarbon-contaminated soil. Environmental Science and Pollution Research, 2015, 22, 2335-2341. | 2.7 | 68        |
| 51 | Nickle-cobalt composite catalyst-modified activated carbon anode for direct glucose alkaline fuel<br>cell. International Journal of Hydrogen Energy, 2018, 43, 1805-1815.                       | 3.8 | 68        |
| 52 | Membrane fouling mitigation by coupling applied electric field in membrane system: Configuration, mechanism and performance. Electrochimica Acta, 2018, 287, 124-134.                           | 2.6 | 68        |
| 53 | A novel electro-coagulation-Fenton for energy efficient cyanobacteria and cyanotoxins removal without chemical addition. Journal of Hazardous Materials, 2019, 365, 650-658.                    | 6.5 | 65        |
| 54 | <i>Geobacter</i> Autogenically Secretes Fulvic Acid to Facilitate the Dissimilated Iron Reduction and Vivianite Recovery. Environmental Science & amp; Technology, 2020, 54, 10850-10858.       | 4.6 | 65        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Phosphorus Competition in Bioinduced Vivianite Recovery from Wastewater. Environmental Science<br>& Technology, 2018, 52, 13863-13870.                                                                                             | 4.6 | 64        |
| 56 | Subminimal inhibitory concentration (sub-MIC) of antibiotic induces electroactive biofilm formation in bioelectrochemical systems. Water Research, 2017, 125, 280-287.                                                             | 5.3 | 63        |
| 57 | Salinity and Conductivity Amendment of Soil Enhanced the Bioelectrochemical Degradation of<br>Petroleum Hydrocarbons. Scientific Reports, 2016, 6, 32861.                                                                          | 1.6 | 61        |
| 58 | Accelerated OH <sup>–</sup> Transport in Activated Carbon Air Cathode by Modification of<br>Quaternary Ammonium for Microbial Fuel Cells. Environmental Science & Technology, 2014, 48,<br>4191-4198.                              | 4.6 | 60        |
| 59 | Degradation of raw corn stover powder (RCSP) by an enriched microbial consortium and its community structure. Bioresource Technology, 2011, 102, 742-747.                                                                          | 4.8 | 59        |
| 60 | Facile electrochemical approach for the production of graphite oxide with tunable chemistry.<br>Carbon, 2017, 112, 185-191.                                                                                                        | 5.4 | 59        |
| 61 | Microbial fuel cells using natural pyrrhotite as the cathodic heterogeneous Fenton catalyst towards the degradation of biorefractory organics in landfill leachate. Electrochemistry Communications, 2010, 12, 944-947.            | 2.3 | 58        |
| 62 | Time behavior and capacitance analysis of nano-Fe3O4 added microbial fuel cells. Bioresource<br>Technology, 2013, 144, 689-692.                                                                                                    | 4.8 | 56        |
| 63 | Resin-enhanced rolling activated carbon electrode for efficient capacitive deionization. Desalination, 2017, 419, 20-28.                                                                                                           | 4.0 | 56        |
| 64 | Revealing Decay Mechanisms of H <sub>2</sub> O <sub>2</sub> -Based Electrochemical Advanced<br>Oxidation Processes after Long-Term Operation for Phenol Degradation. Environmental Science &<br>Technology, 2020, 54, 10916-10925. | 4.6 | 56        |
| 65 | Electron Flow Shifts from Anode Respiration to Nitrate Reduction During Electroactive Biofilm<br>Thickening. Environmental Science & Technology, 2020, 54, 9593-9600.                                                              | 4.6 | 55        |
| 66 | Carbonâ€supported perovskite oxides as oxygen reduction reaction catalyst in single chambered microbial fuel cells. Journal of Chemical Technology and Biotechnology, 2013, 88, 774-778.                                           | 1.6 | 53        |
| 67 | Alternating Current Influences Anaerobic Electroactive Biofilm Activity. Environmental Science &<br>Technology, 2016, 50, 9169-9176.                                                                                               | 4.6 | 52        |
| 68 | Isolation and Characterization of an Agaro-Oligosaccharide (AO)-Hydrolyzing Bacterium from the Gut<br>Microflora of Chinese Individuals. PLoS ONE, 2014, 9, e91106.                                                                | 1.1 | 52        |
| 69 | Bifunctional quaternary ammonium compounds to inhibit biofilm growth and enhance performance<br>for activated carbon air-cathode in microbial fuel cells. Journal of Power Sources, 2014, 272, 895-899.                            | 4.0 | 51        |
| 70 | Real-Time Imaging Revealed That Exoelectrogens from Wastewater Are Selected at the Center of a<br>Gradient Electric Field. Environmental Science & Technology, 2018, 52, 8939-8946.                                                | 4.6 | 49        |
| 71 | Biomonitoring persistent organic pollutants in the atmosphere with mosses: Performance and application. Environment International, 2014, 66, 28-37.                                                                                | 4.8 | 48        |
| 72 | Repeated transfer enriches highly active electrotrophic microbial consortia on biocathodes in microbial fuel cells. Biosensors and Bioelectronics, 2018, 121, 118-124.                                                             | 5.3 | 48        |

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Nutrient conversion and recovery from wastewater using electroactive bacteria. Science of the Total<br>Environment, 2020, 706, 135690.                                                          | 3.9 | 46        |
| 74 | Effects of sulfide on microbial fuel cells with platinum and nitrogen-doped carbon powder cathodes.<br>Biosensors and Bioelectronics, 2012, 35, 413-415.                                        | 5.3 | 45        |
| 75 | Electrode potential regulates phenol degradation pathways in oxygen-diffused microbial electrochemical system. Chemical Engineering Journal, 2020, 381, 122663.                                 | 6.6 | 43        |
| 76 | Combined phyto-microbial-electrochemical system enhanced the removal of petroleum hydrocarbons from soil: A profundity remediation strategy. Journal of Hazardous Materials, 2021, 420, 126592. | 6.5 | 43        |
| 77 | Long-Term Succession Shows Interspecies Competition of <i>Geobacter</i> in Exoelectrogenic<br>Biofilms. Environmental Science & Technology, 2021, 55, 14928-14937.                              | 4.6 | 43        |
| 78 | Power generation using adjustable Nafion/PTFE mixed binders in air-cathode microbial fuel cells.<br>Biosensors and Bioelectronics, 2010, 26, 946-948.                                           | 5.3 | 42        |
| 79 | A solar assisted microbial electrolysis cell for hydrogen production driven by a microbial fuel cell.<br>RSC Advances, 2015, 5, 82276-82281.                                                    | 1.7 | 42        |
| 80 | Efficient decolorization of azo dye wastewater with polyaniline/graphene modified anode in microbial electrochemical systems. Journal of Hazardous Materials, 2022, 421, 126740.                | 6.5 | 42        |
| 81 | The effect of water proofing on the performance of nickel foam cathode in microbial fuel cells.<br>Journal of Power Sources, 2012, 198, 100-104.                                                | 4.0 | 40        |
| 82 | The use of double-sided cloth without diffusion layers as air-cathode in microbial fuel cells. Journal of Power Sources, 2011, 196, 8409-8412.                                                  | 4.0 | 39        |
| 83 | The electrochemical behavior of three air cathodes for microbial electrochemical system (MES) under meter scale water pressure. Journal of Power Sources, 2014, 267, 219-226.                   | 4.0 | 39        |
| 84 | Protection of Electroactive Biofilm from Extreme Acid Shock by Polydopamine Encapsulation.<br>Environmental Science and Technology Letters, 2017, 4, 345-349.                                   | 3.9 | 39        |
| 85 | Two key Geobacter species of wastewater-enriched electroactive biofilm respond differently to electric field. Water Research, 2022, 213, 118185.                                                | 5.3 | 39        |
| 86 | Bioelectrochemical Sensor Using Living Biofilm To in Situ Evaluate Flocculant Toxicity. ACS Sensors, 2016, 1, 1374-1379.                                                                        | 4.0 | 38        |
| 87 | Gravity settling of planktonic bacteria to anodes enhances current production of microbial fuel cells. Applied Energy, 2017, 198, 261-266.                                                      | 5.1 | 38        |
| 88 | Restructured fungal community diversity and biological interactions promote metolachlor biodegradation in soil microbial fuel cells. Chemosphere, 2019, 221, 735-749.                           | 4.2 | 38        |
| 89 | Regeneration of activated carbon air-cathodes by half-wave rectified alternating fields in microbial fuel cells. Applied Energy, 2018, 219, 199-206.                                            | 5.1 | 37        |
| 90 | Syntrophic Growth of Geobacter sulfurreducens Accelerates Anaerobic Denitrification. Frontiers in<br>Microbiology, 2018, 9, 1572.                                                               | 1.5 | 37        |

| #   | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Optimal set of electrode potential enhances the toxicity response of biocathode to formaldehyde.<br>Science of the Total Environment, 2018, 644, 1485-1492.                                                                     | 3.9 | 37        |
| 92  | In-situ hydrogen peroxide synthesis with environmental applications in bioelectrochemical systems: A state-of-the-art review. International Journal of Hydrogen Energy, 2021, 46, 3204-3219.                                    | 3.8 | 36        |
| 93  | An electroactive biofilm-based biosensor for water safety: Pollutants detection and early-warning.<br>Biosensors and Bioelectronics, 2021, 173, 112822.                                                                         | 5.3 | 36        |
| 94  | Swift Acid Rain Sensing by Synergistic Rhizospheric Bioelectrochemical Responses. ACS Sensors, 2018, 3, 1424-1430.                                                                                                              | 4.0 | 34        |
| 95  | Quaternary Ammonium Compound in Anolyte without Functionalization Accelerates the Startup of<br>Bioelectrochemical Systems using Real Wastewater. Electrochimica Acta, 2016, 188, 801-808.                                      | 2.6 | 33        |
| 96  | Peony petal-like 3D graphene-nickel oxide nanocomposite decorated nickel foam as high-performance<br>electrocatalyst for direct glucose alkaline fuel cell. International Journal of Hydrogen Energy, 2017,<br>42, 29863-29873. | 3.8 | 33        |
| 97  | Biosynthetic FeS/BC hybrid particles enhanced the electroactive bacteria enrichment in microbial electrochemical systems. Science of the Total Environment, 2021, 762, 143142.                                                  | 3.9 | 32        |
| 98  | Graphite accelerate dissimilatory iron reduction and vivianite crystal enlargement. Water Research, 2021, 189, 116663.                                                                                                          | 5.3 | 32        |
| 99  | A promising destiny for Feammox: From biogeochemical ammonium oxidation to wastewater treatment. Science of the Total Environment, 2021, 790, 148038.                                                                           | 3.9 | 32        |
| 100 | The micro-niche of exoelectrogens influences bioelectricity generation in bioelectrochemical systems. Renewable and Sustainable Energy Reviews, 2020, 134, 110184.                                                              | 8.2 | 31        |
| 101 | Accelerated removal of high concentration p-chloronitrobenzene using bioelectrocatalysis process and its microbial communities analysis. Bioresource Technology, 2018, 249, 844-850.                                            | 4.8 | 30        |
| 102 | Anode respiration-dependent biological nitrogen fixation by Geobacter sulfurreducens. Water<br>Research, 2022, 208, 117860.                                                                                                     | 5.3 | 30        |
| 103 | A novel and high performance activated carbon air-cathode with decreased volume density and catalyst layer invasion for microbial fuel cells. RSC Advances, 2014, 4, 42577-42580.                                               | 1.7 | 29        |
| 104 | Electrosynthesis of H2O2 through a two-electron oxygen reduction reaction by carbon based<br>catalysts: From mechanism, catalyst design to electrode fabrication. Environmental Science and<br>Ecotechnology, 2022, 11, 100170. | 6.7 | 29        |
| 105 | Tiny crystalline grain nanocrystal NiCo 2 O 4 /N-doped graphene composite for efficient oxygen reduction reaction. Journal of Power Sources, 2017, 345, 41-49.                                                                  | 4.0 | 25        |
| 106 | Biosynthesis of vivianite from microbial extracellular electron transfer and environmental application. Science of the Total Environment, 2021, 762, 143076.                                                                    | 3.9 | 25        |
| 107 | Light exposure interferes with electroactive biofilm enrichment and reduces extracellular electron transfer efficiency. Water Research, 2021, 188, 116512.                                                                      | 5.3 | 25        |
| 108 | Enhanced nonradical catalytic oxidation by encapsulating cobalt into nitrogen doped graphene:<br>highlight on interfacial interactions. Journal of Materials Chemistry A, 2021, 9, 7198-7207.                                   | 5.2 | 25        |

| #   | Article                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | In Situ Representation of Soil/Sediment Conductivity Using Electrochemical Impedance Spectroscopy.<br>Sensors, 2016, 16, 625.                                                                          | 2.1 | 23        |
| 110 | Unignorable toxicity of formaldehyde on electroactive bacteria in bioelectrochemical systems.<br>Environmental Research, 2020, 183, 109143.                                                            | 3.7 | 23        |
| 111 | Energy harvesting influences electrochemical performance of microbial fuel cells. Journal of Power Sources, 2017, 356, 356-364.                                                                        | 4.0 | 22        |
| 112 | Insight of bacteria and archaea in Feammox community enriched from different soils. Environmental<br>Research, 2022, 203, 111802.                                                                      | 3.7 | 22        |
| 113 | Improvement of sludge characteristics and mitigation of membrane fouling in the treatment of pesticide wastewater by electrochemical anaerobic membrane bioreactor. Water Research, 2022, 213, 118153. | 5.3 | 22        |
| 114 | Electricity generation using eight amino acids by air–cathode microbial fuel cells. Fuel, 2012, 102, 478-482.                                                                                          | 3.4 | 21        |
| 115 | Bioelectrochemical system for dehalogenation: A review. Environmental Pollution, 2022, 293, 118519.                                                                                                    | 3.7 | 21        |
| 116 | Enhanced oxygen reducing biocathode electroactivity by using sediment extract as inoculum.<br>Bioelectrochemistry, 2017, 117, 9-14.                                                                    | 2.4 | 20        |
| 117 | Acetate stimulates tetracycline biodegradation pathways in bioelectrochemical system. Separation and Purification Technology, 2022, 286, 120481.                                                       | 3.9 | 20        |
| 118 | Spatially heterogeneous propionate conversion towards electricity in bioelectrochemical systems.<br>Journal of Power Sources, 2020, 449, 227557.                                                       | 4.0 | 18        |
| 119 | Integrated energy view of wastewater treatment: A potential of electrochemical biodegradation.<br>Frontiers of Environmental Science and Engineering, 2022, 16, 1.                                     | 3.3 | 17        |
| 120 | Machine Learning Enables Quantification of Multiple Toxicants with Microbial Electrochemical Sensors. ACS ES&T Engineering, 2022, 2, 92-100.                                                           | 3.7 | 17        |
| 121 | Ecological responses to substrates in electroactive biofilm: A review. Science China Technological<br>Sciences, 2019, 62, 1657-1669.                                                                   | 2.0 | 16        |
| 122 | Bioelectrochemical partial-denitrification coupled with anammox for autotrophic nitrogen removal.<br>Chemical Engineering Journal, 2022, 434, 134667.                                                  | 6.6 | 16        |
| 123 | Performance of a batch twoâ€chambered microbial fuel cell operated at different anode potentials.<br>Journal of Chemical Technology and Biotechnology, 2011, 86, 590-594.                              | 1.6 | 15        |
| 124 | Effects of roxithromycin on ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in the rhizosphere of wheat. Applied Microbiology and Biotechnology, 2014, 98, 263-272.                          | 1.7 | 15        |
| 125 | Graphene family for hydrogen peroxide production in electrochemical system. Science of the Total Environment, 2021, 769, 144491.                                                                       | 3.9 | 14        |
| 126 | A highly sensitive bioelectrochemical toxicity sensor and its evaluation using immediate current attenuation. Science of the Total Environment, 2021, 766, 142646.                                     | 3.9 | 12        |

| #   | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Efficient regeneration of activated carbon electrode by half-wave rectified alternating fields in capacitive deionization system. Electrochimica Acta, 2019, 298, 372-378.                                                                       | 2.6 | 11        |
| 128 | The UV/H2O2 process based on H2O2 in-situ generation for water disinfection. Journal of Hazardous Materials Letters, 2021, 2, 100020.                                                                                                            | 2.0 | 11        |
| 129 | Amplifying anti-flooding electrode to fabricate modular electro-fenton system for degradation of antiviral drug lamivudine in wastewater. Journal of Hazardous Materials, 2022, 428, 128185.                                                     | 6.5 | 11        |
| 130 | Thermal reduced graphene oxide enhanced in-situ H2O2 generation and electrochemical advanced oxidation performance of air-breathing cathode. Environmental Research, 2022, 204, 112327.                                                          | 3.7 | 9         |
| 131 | Construction of conductive network using magnetite to enhance microflora interaction and petroleum hydrocarbons removal in plant-rhizosphere microbial electrochemical system. Chemical Engineering Journal, 2022, 433, 133600.                  | 6.6 | 9         |
| 132 | The use of natural hierarchical porous carbon from Artemia cyst shells alleviates power decay in activated carbon air-cathode. Electrochimica Acta, 2019, 315, 41-47.                                                                            | 2.6 | 8         |
| 133 | Remediation of PNP-contaminated groundwater using a modified CaO2/Fe(II) Fenton system: Reactive principles, degradation performance and potential pathways. Journal of Environmental Chemical Engineering, 2022, 10, 107305.                    | 3.3 | 8         |
| 134 | Promotion of anodic electron transfer in a microbial fuel cell combined with a silicon solar cell.<br>Journal of Power Sources, 2014, 253, 177-180.                                                                                              | 4.0 | 7         |
| 135 | Excessive extracellular polymeric substances induced by organic shocks accelerate electron transfer of oxygen reducing biocathode. Science of the Total Environment, 2021, 774, 145767.                                                          | 3.9 | 7         |
| 136 | Biosynthesis and recycling of magnetite nanocatalysts from Fe-rich sludge. Resources, Conservation and Recycling, 2022, 182, 106348.                                                                                                             | 5.3 | 7         |
| 137 | A modelling study of the spatially heterogeneous mutualism between electroactive biofilm and planktonic bacteria. Science of the Total Environment, 2021, 759, 143537.                                                                           | 3.9 | 6         |
| 138 | High current density with spatial distribution of Geobacter in anodic biofilm of the microbial<br>electrolysis desalination and chemical-production cell with enlarged volumetric anode. Science of<br>the Total Environment, 2022, 831, 154798. | 3.9 | 6         |
| 139 | Poised potential is not an effective strategy to enhance bio-electrochemical denitrification under cyclic substrate limitations. Science of the Total Environment, 2020, 713, 136698.                                                            | 3.9 | 5         |
| 140 | Responses of electroactive biofilms to chronic chlorine exposure: Insights from the composition and spatial structure of extracellular polymeric substances. Bioelectrochemistry, 2021, 142, 107894.                                             | 2.4 | 5         |
| 141 | Synthesis of silver nanoparticles using living electroactive biofilm protected by polydopamine.<br>IScience, 2021, 24, 102933.                                                                                                                   | 1.9 | 4         |
| 142 | Electricity Generation in Microbial Fuel Cells at Different Temperature and Isolation of Electrogenic<br>Bacteria. , 2009, , .                                                                                                                   |     | 3         |
| 143 | Polystyrene Microspheres Coupled with Hybridization Chain Reaction for Dual-Amplified<br>Chemiluminescence Detection of Specific DNA Sequences. Journal of Analysis and Testing, 2017, 1,<br>306-314.                                            | 2.5 | 3         |
| 144 | Dibutyl phthalate weakens the role of electroactive biofilm as an efficient wastewater handler and related mechanism. Science of the Total Environment, 2022, 807, 151612.                                                                       | 3.9 | 3         |

| #   | Article                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Synthesis of ppy–MgO–CNT nanocomposites for multifunctional applications. RSC Advances, 2021, 11, 36379-36390.                                                                                  | 1.7 | 3         |
| 146 | Air-Cathodes. , 2019, , 99-115.                                                                                                                                                                 |     | 1         |
| 147 | Response of Methanogen Communities to the Elevation of Cathode Potentials in Bioelectrochemical<br>Reactors Amended with Magnetite. Applied and Environmental Microbiology, 2021, 87, e0148821. | 1.4 | 1         |