Tobias Dalhaus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/408200/publications.pdf

Version: 2024-02-01

18 papers	701 citations	623734 14 h-index	19 g-index
19	19	19	578
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Blockchain Technology for Agriculture: Applications and Rationale. Frontiers in Blockchain, 2020, 3, .	2.6	159
2	Phenology Information Contributes to Reduce Temporal Basis Risk in Agricultural Weather Index Insurance. Scientific Reports, 2018, 8, 46.	3.3	68
3	Index insurances for grasslands – A review for Europe and North-America. Agricultural Systems, 2019, 168, 101-111.	6.1	65
4	Revisiting Pesticide Taxation Schemes. Ecological Economics, 2017, 134, 263-266.	5.7	59
5	Can Gridded Precipitation Data and Phenological Observations Reduce Basis Risk of Weather Index–Based Insurance?. Weather, Climate, and Society, 2016, 8, 409-419.	1.1	56
6	Crop insurance and pesticide use in European agriculture. Agricultural Systems, 2020, 184, 102902.	6.1	54
7	The optimal drought index for designing weather index insurance. European Review of Agricultural Economics, 2021, 48, 573-597.	3.1	40
8	The Effects of Extreme Weather on Apple Quality. Scientific Reports, 2020, 10, 7919.	3.3	33
9	Insuring crops from space: the potential of satellite-retrieved soil moisture to reduce farmers' drought risk exposure. European Review of Agricultural Economics, 2021, 48, 266-314.	3.1	33
10	Mapping potential implications of temporary COVIDâ€19 export bans for the food supply in importing countries using precrisis trade flows. Agribusiness, 2021, 37, 25-43.	3.4	31
11	Determinants of downside risk exposure of dairy farms. European Review of Agricultural Economics, 2018, 45, 641-674.	3.1	27
12	Behavioral weather insurance: Applying cumulative prospect theory to agricultural insurance design under narrow framing. PLoS ONE, 2020, 15, e0232267.	2.5	19
13	Mapping global research on agricultural insurance. Environmental Research Letters, 2021, 16, 103003.	5.2	17
14	Temperature effects on crop yields in heat index insurance. Food Policy, 2022, 107, 102214.	6.0	15
15	Accounting for Geographic Basis Risk in Heat Index Insurance: How Spatial Interpolation Can Reduce the Cost of Risk. Weather, Climate, and Society, 2021, 13, 273-286.	1.1	10
16	Revisiting the diversification and insurance relationship: Differences between on– and off-farm strategies. Climate Risk Management, 2021, 32, 100315.	3.2	9
17	Extreme heat reduces insecticide use under real field conditions. Science of the Total Environment, 2022, 819, 152043.	8.0	4
18	Assessing expected utility and profitability to support decision-making for disease control strategies in ornamental heather production. Precision Agriculture, 2022, 23, 1775-1800.	6.0	1