List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4081981/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. International Journal of Biological Macromolecules, 2016, 89, 161-174.	7.5	487
2	A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. International Journal of Biological Macromolecules, 2017, 96, 282-301.	7.5	295
3	Lignin-derivatives based polymers, blends and composites: A review. International Journal of Biological Macromolecules, 2016, 93, 296-313.	7.5	251
4	Recent trends on gellan gum blends with natural and synthetic polymers: A review. International Journal of Biological Macromolecules, 2018, 109, 1068-1087.	7.5	235
5	Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review. International Journal of Biological Macromolecules, 2017, 101, 254-272.	7.5	228
6	Recent developments in curcumin and curcumin based polymeric materials for biomedical applications: A review. International Journal of Biological Macromolecules, 2015, 81, 877-890.	7.5	205
7	Recent developments and future prospects on bio-based polyesters derived from renewable resources: A review. International Journal of Biological Macromolecules, 2016, 82, 1028-1040.	7.5	188
8	Chitosan functionalized poly(vinyl alcohol) for prospects biomedical and industrial applications: A review. International Journal of Biological Macromolecules, 2016, 87, 141-154.	7.5	174
9	Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications. International Journal of Biological Macromolecules, 2016, 86, 630-645.	7.5	157
10	Polysaccharide based bionanocomposites, properties and applications: A review. International Journal of Biological Macromolecules, 2016, 92, 1012-1024.	7.5	153
11	Alginate based polyurethanes: A review of recent advances and perspective. International Journal of Biological Macromolecules, 2015, 79, 377-387.	7.5	129
12	Starch based polyurethanes: A critical review updating recent literature. Carbohydrate Polymers, 2015, 134, 784-798.	10.2	123
13	Molecular engineering of chitin based polyurethane elastomers. Carbohydrate Polymers, 2008, 74, 149-158.	10.2	113
14	Recent trends in environmentally friendly water-borne polyurethane coatings: A review. Korean Journal of Chemical Engineering, 2016, 33, 388-400.	2.7	113
15	Blends and composites of exopolysaccharides; properties and applications: A review. International Journal of Biological Macromolecules, 2017, 94, 10-27.	7.5	99
16	Synthesis and molecular characterization of chitosan based polyurethane elastomers using aromatic diisocyanate. International Journal of Biological Macromolecules, 2014, 66, 26-32.	7.5	95
17	Graft polymerization of guar gum with acryl amide irradiated by microwaves for colonic drug delivery. International Journal of Biological Macromolecules, 2013, 62, 172-179.	7.5	89
18	XRD studies of polyurethane elastomers based on chitin/1,4-butane diol blends. Carbohydrate Polymers, 2009, 76, 183-187.	10.2	79

#	Article	IF	CITATIONS
19	Molecular engineering and properties of chitin based shape memory polyurethanes. Carbohydrate Polymers, 2008, 74, 621-626.	10.2	73
20	XRD studies of chitin-based polyurethane elastomers. International Journal of Biological Macromolecules, 2008, 43, 136-141.	7.5	71
21	A critical review of algal biomass: A versatile platform of bio-based polyesters from renewable resources. International Journal of Biological Macromolecules, 2016, 86, 937-949.	7.5	65
22	Synthesis and characterization of novel, biodegradable, thermally stable chitinâ€based polyurethane elastomers. Journal of Applied Polymer Science, 2008, 110, 769-776.	2.6	60
23	In-vivo anti-diabetic and wound healing potential of chitosan/alginate/maltodextrin/pluronic-based mixed polymeric micelles: Curcumin therapeutic potential. International Journal of Biological Macromolecules, 2018, 120, 2418-2430.	7.5	60
24	Modification of cellulosic fiber with polyurethane acrylate copolymers. Part I: Physicochemical properties. Carbohydrate Polymers, 2012, 87, 397-404.	10.2	58
25	Evaluation of biocompatibility and mechanical behavior of polyurethane elastomers based on chitin/1,4-butane diol blends. International Journal of Biological Macromolecules, 2009, 44, 18-22.	7.5	56
26	Collagen based polyurethanes—A review of recent advances and perspective. International Journal of Biological Macromolecules, 2015, 80, 366-374.	7.5	54
27	Synthesis and characterization of chitosan-based waterborne polyurethane for textile finishes. Carbohydrate Polymers, 2018, 200, 54-62.	10.2	54
28	Influence of Microwave Radiation on Dyeing of Bio-mordanted Silk Fabric using Neem Bark (<i>Azadirachta indica</i>)-Based Tannin Natural Dye. Journal of Natural Fibers, 2020, 17, 1410-1422.	3.1	50
29	Cytotoxicity and mechanical behavior of chitin–bentonite clay based polyurethane bio-nanocomposites. International Journal of Biological Macromolecules, 2011, 49, 1131-1136.	7.5	49
30	Synthesis and properties of aqueous polyurethane dispersions: Influence of molecular weight of polyethylene glycol. Korean Journal of Chemical Engineering, 2013, 30, 2259-2263.	2.7	47
31	Surface characteristics of chitin-based shape memory polyurethane elastomers. Colloids and Surfaces B: Biointerfaces, 2009, 72, 248-252.	5.0	45
32	Synthesis, characterization of novel chitosan based water dispersible polyurethanes and their potential deployment as antibacterial textile finish. International Journal of Biological Macromolecules, 2018, 111, 485-492.	7.5	45
33	Synthesis and thermomechanical characterization of polyurethane elastomers extended with α,ï‰â€alkane diols. Journal of Applied Polymer Science, 2008, 109, 1840-1849.	2.6	44
34	Preparation of rich handles soft cellulosic fabric using amino silicone based softener. Part-I: Surface smoothness and softness properties. International Journal of Biological Macromolecules, 2011, 48, 482-487.	7.5	43
35	Preparation of rich handles soft cellulosic fabric using amino silicone based softener, part II: Colorfastness properties. International Journal of Biological Macromolecules, 2011, 49, 1-6.	7.5	40
36	Heparin based polyurethanes: A state-of-the-art review. International Journal of Biological Macromolecules, 2016, 84, 101-111.	7.5	40

#	Article	IF	CITATIONS
37	Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review. International Journal of Biological Macromolecules, 2017, 98, 748-776.	7.5	40
38	Evaluation of biocompatibility and mechanical behavior of chitin-based polyurethane elastomers. Part-II: Effect of diisocyanate structure. International Journal of Biological Macromolecules, 2009, 44, 23-28.	7.5	39
39	Surface characteristics of polyurethane elastomers based on chitin/1,4-butane diol blends. International Journal of Biological Macromolecules, 2009, 44, 182-185.	7.5	37
40	Influence of Polyol Molecular Weight and Type on the Tack and Peel Properties of Waterborne Polyurethane Pressureâ€ <scp>S</scp> ensitive Adhesives. Macromolecular Reaction Engineering, 2013, 7, 493-503.	1.5	37
41	Synthesis, characterization and efficiency evaluation of chitosan-polyurethane based textile finishes. International Journal of Biological Macromolecules, 2016, 93, 145-155.	7.5	36
42	XRD pattern of chitin based polyurethane bio-nanocomposites. Carbohydrate Polymers, 2010, 80, 539-543.	10.2	35
43	Chitin based polyurethanes using hydroxyl terminated polybutadiene, part III: Surface characteristics. International Journal of Biological Macromolecules, 2013, 62, 670-676.	7.5	30
44	Eco-Friendly Isolation Of Colorant From Arjun Bark For Dyeing Of Bio-Mordanted Cotton Fabric. Journal of Natural Fibers, 2022, 19, 4684-4695.	3.1	30
45	XRD studies of UV-irradiated chitin based polyurethane elastomers. Carbohydrate Polymers, 2009, 77, 54-58.	10.2	29
46	Surface characteristics of UV-irradiated polyurethane elastomers extended with α, ï‰-alkane diols. Applied Surface Science, 2008, 254, 6754-6761.	6.1	28
47	Synthesis of chitin–bentonite clay based polyurethane bio-nanocomposites. International Journal of Biological Macromolecules, 2010, 47, 196-200.	7.5	28
48	Modification of cellulosic fibers by UV-irradiation. Part II: After treatments effects. International Journal of Biological Macromolecules, 2012, 51, 743-748.	7.5	28
49	Synthesis and characterization of chitosan/curcumin blends based polyurethanes. International Journal of Biological Macromolecules, 2016, 92, 1074-1081.	7.5	28
50	Glucomannan based polyurethanes: A critical short review of recent advances and future perspectives. International Journal of Biological Macromolecules, 2016, 87, 229-236.	7.5	28
51	Synthesis and characterization of polyurethane/bentonite nanoclay based nanocomposites using toluene diisocyanate. Korean Journal of Chemical Engineering, 2014, 31, 644-649.	2.7	26
52	Biocompatibility and microscopic evaluation of polyurethane–poly(methyl methacrylate)–titnanium dioxide based composites for dental applications. Journal of Applied Polymer Science, 2014, 131, .	2.6	26
53	Microwave-Supported Green Dyeing of Mordanted Wool Fabric with Arjun Bark Extracts. Journal of Natural Fibers, 2021, 18, 136-150.	3.1	25
54	Synthesis and characterization of chitin/curcumin blended polyurethane elastomers. International Journal of Biological Macromolecules, 2018, 113, 150-158.	7.5	24

#	Article	IF	CITATIONS
55	Structural characteristics of UVâ€irradiated polyurethane elastomers extended with α,ï‰â€alkane diols. Journal of Applied Polymer Science, 2009, 113, 2843-2850.	2.6	23
56	Surface characteristics of UV-irradiated chitin-based shape memory polyurethanes. Carbohydrate Polymers, 2010, 80, 229-234.	10.2	21
57	A comprehensive review on synthesis, characterization, and applications of polydimethylsiloxane and copolymers. International Journal of Plastics Technology, 2019, 23, 261-282.	3.1	21
58	Modification of cellulosic fibers to enhance their dyeability using UV-irradiation. Carbohydrate Polymers, 2012, 89, 783-787.	10.2	20
59	Chitin and Chitosan Based Blends, Composites and Nanocomposites. Advanced Structured Materials, 2013, , 55-119.	0.5	19
60	Study of the UV protective and antibacterial properties of aqueous polyurethane dispersions extended with low molecular weight chitosan. International Journal of Biological Macromolecules, 2017, 94, 51-60.	7.5	19
61	Synthesis and characterization of waterborne polyurethane acrylate copolymers. Korean Journal of Chemical Engineering, 2013, 30, 488-493.	2.7	18
62	Antimicrobial and pilling evaluation of the modified cellulosic fabrics using polyurethane acrylate copolymers. International Journal of Biological Macromolecules, 2013, 56, 99-105.	7.5	18
63	Morphological and thermal studies of chitin-curcumin blends derived polyurethanes. International Journal of Biological Macromolecules, 2017, 105, 1180-1191.	7.5	18
64	Preparation of hydroxyethyl cellulose/halloysite nanotubes graft polylactic acid-based polyurethane bionanocomposites. International Journal of Biological Macromolecules, 2020, 153, 591-599.	7.5	18
65	Performance behavior of modified cellulosic fabrics using polyurethane acrylate copolymer. International Journal of Biological Macromolecules, 2014, 67, 254-259.	7.5	17
66	Modification of cellulosic fabric using polyvinyl alcohol, part-II: Colorfastness properties. Carbohydrate Polymers, 2012, 87, 2439-2446.	10.2	16
67	Improvement of performance behavior of cellulosic fiber with polyurethane acrylate copolymers. Carbohydrate Polymers, 2011, 86, 928-935.	10.2	15
68	Modification of cellulosic fabric using polyvinyl alcohol—Part-I: Physicochemical properties. Carbohydrate Polymers, 2012, 87, 2063-2067.	10.2	15
69	Chitin based polyurethanes using hydroxyl terminated polybutadiene. Part I: Molecular engineering. International Journal of Biological Macromolecules, 2013, 59, 320-327.	7.5	15
70	Properties of the modified cellulosic fabrics using polyurethane acrylate copolymers. Carbohydrate Polymers, 2013, 94, 866-873.	10.2	15
71	Lipid functionalized biopolymers: A review. International Journal of Biological Macromolecules, 2016, 93, 1057-1068.	7.5	15
72	Synthesis and characterization of graphene nanoplatelets-hydroxyethyl cellulose copolymer-based polyurethane bionanocomposite system. International Journal of Biological Macromolecules, 2020, 165, 1889-1899.	7.5	15

#	Article	IF	CITATIONS
73	Preparation and characterization of guar gum based polyurethanes. International Journal of Biological Macromolecules, 2021, 183, 2174-2183.	7.5	15
74	Enhancement of bioactivity and bioavailability of curcumin with chitosan based materials. Korean Journal of Chemical Engineering, 2016, 33, 3316-3329.	2.7	14
75	Synthesis and Characterization of Aqueous Chitosan-polyurethanes Dispersion for Textile Applications with Multipurpose Performance Profile. Fibers and Polymers, 2018, 19, 587-598.	2.1	14
76	Hydroxyethylcellulose-g-poly(lactic acid) blended polyurethanes: Preparation, characterization and biological studies. International Journal of Biological Macromolecules, 2020, 151, 993-1003.	7.5	14
77	Thermo-mechanical characteristics of UV-irradiated polyurethane elastomers extended with α, ω-alkane diols. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 1811-1816.	1.4	13
78	Structural elucidation and biological aptitude of modified hydroxyethylcellulose-polydimethyl siloxane based polyurethanes. International Journal of Biological Macromolecules, 2020, 150, 426-440.	7.5	13
79	Synthesis and characterization of novel curcumin based polyurethanes varying diisocyanates structure. Journal of Polymer Research, 2016, 23, 1.	2.4	12
80	Synthesis and characterization of polyurethane based on aliphatic diisocyanate and stiff chain extenders. Korean Journal of Chemical Engineering, 2015, 32, 184-190.	2.7	10
81	Blends of polyurethane-polymethyl methacrylate/TiO2-based composites. Korean Journal of Chemical Engineering, 2013, 30, 1652-1658.	2.7	9
82	Development, optimization, and biovalidation of 99mTc–insulin complex. Russian Journal of Bioorganic Chemistry, 2016, 42, 491-496.	1.0	9
83	Synthesis and characterization of hydroxyethyl cellulose (HEC)-TiO2-based polyurethane bionanocomposites. Korean Journal of Chemical Engineering, 2020, 37, 2351-2358.	2.7	8
84	Chitin based polyurethanes using hydroxyl terminated polybutadiene, Part II: Morphological studies. International Journal of Biological Macromolecules, 2013, 59, 313-319.	7.5	7
85	Algae-Based Polyurethane Blends and Composites. , 2017, , 415-458.		7
86	Synthesis and thermo-mechanical investigation of macrodiol-based shape memory polyurethane elastomers. International Journal of Materials Research, 2017, 108, 515-522.	0.3	6
87	Adsorption of methyl orange using self-assembled porous microspheres of poly(o-chloroaniline). Korean Journal of Chemical Engineering, 2014, 31, 2192-2197.	2.7	5
88	Impact of Macrodiols on the Morphological Behavior of H12MDI/HDO-Based Polyurethane Elastomer. Polymers, 2021, 13, 2060.	4.5	5
89	Synthesis of novel curcumin-based aqueous polyurethane dispersions for medical textile diligences with potential of antibacterial activities. Polymer Bulletin, 2022, 79, 7711-7727.	3.3	5
90	Synthesis and characterization of polydimethyl siloxane-based polyurethane elastomers using toluene diisocyanate. Journal of Elastomers and Plastics, 2015, 47, 669-680.	1.5	4

#	Article	IF	CITATIONS
91	Surface Reforming of Diamond Particles by the Dispersion Enhancement in Common Liquids. Arabian Journal for Science and Engineering, 2016, 41, 97-103.	1.1	0