
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4081841/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive assessment using global ground-based observations. Remote Sensing of Environment, 2019, 231, 111215.	4.6	186
2	Short and mid-term sea surface temperature prediction using time-series satellite data and LSTM-AdaBoost combination approach. Remote Sensing of Environment, 2019, 233, 111358.	4.6	172
3	Urban drought challenge to 2030 sustainable development goals. Science of the Total Environment, 2019, 693, 133536.	3.9	147
4	A spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data. Environmental Modelling and Software, 2019, 120, 104502.	1.9	122
5	Multi-sensor integrated framework and index for agricultural drought monitoring. Remote Sensing of Environment, 2017, 188, 141-163.	4.6	116
6	Environmental efficiency analysis of the Yangtze River Economic Zone using super efficiency data envelopment analysis (SEDEA) and tobit models. Energy, 2017, 134, 659-671.	4.5	108
7	Long-Term Surface Water Dynamics Analysis Based on Landsat Imagery and the Google Earth Engine Platform: A Case Study in the Middle Yangtze River Basin. Remote Sensing, 2018, 10, 1635.	1.8	101
8	Global drought trends under 1.5 and 2 °C warming. International Journal of Climatology, 2019, 39, 2375-2385.	1.5	100
9	Quantitative analysis of agricultural drought propagation process in the Yangtze River Basin by using cross wavelet analysis and spatial autocorrelation. Agricultural and Forest Meteorology, 2020, 280, 107809.	1.9	98
10	Continental drought monitoring using satellite soil moisture, data assimilation and an integrated drought index. Remote Sensing of Environment, 2020, 250, 112028.	4.6	94
11	Droughts in India from 1981 to 2013 and Implications to Wheat Production. Scientific Reports, 2017, 7, 44552.	1.6	80
12	In-situ and triple-collocation based evaluations of eight global root zone soil moisture products. Remote Sensing of Environment, 2021, 254, 112248.	4.6	77
13	Integrated open geospatial web service enabled cyber-physical information infrastructure for precision agriculture monitoring. Computers and Electronics in Agriculture, 2015, 111, 78-91.	3.7	71
14	Urban Expansion in Ethiopia from 1987 to 2017: Characteristics, Spatial Patterns, and Driving Forces. Sustainability, 2019, 11, 2973.	1.6	69
15	Annual large-scale urban land mapping based on Landsat time series in Google Earth Engine and OpenStreetMap data: A case study in the middle Yangtze River basin. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159, 337-351.	4.9	67
16	An evaluation of statistical, NMME and hybrid models for drought prediction in China. Journal of Hydrology, 2018, 566, 235-249.	2.3	65
17	Improving Global Monthly and Daily Precipitation Estimation by Fusing Gauge Observations, Remote Sensing, and Reanalysis Data Sets. Water Resources Research, 2020, 56, e2019WR026444.	1.7	64
18	Cloud Computing Enabled Web Processing Service for Earth Observation Data Processing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5, 1637-1649.	2.3	60

NENGCHENG CHEN

#	Article	IF	CITATIONS
19	A flexible geospatial sensor observation service for diverse sensor data based on Web service. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64, 234-242.	4.9	57
20	Geo-processing workflow driven wildfire hot pixel detection under sensor web environment. Computers and Geosciences, 2010, 36, 362-372.	2.0	56
21	Flood detection and mapping of the Thailand Central plain using RADARSAT and MODIS under a sensor web environment. International Journal of Applied Earth Observation and Geoinformation, 2012, 14, 245-255.	1.4	56
22	Drought propagation in Northern China Plain: A comparative analysis of GLDAS and MERRA-2 datasets. Journal of Hydrology, 2020, 588, 125026.	2.3	56
23	Geospatial sensor web: A cyber-physical infrastructure for geoscience research and application. Earth-Science Reviews, 2018, 185, 684-703.	4.0	50
24	Spatiotemporal forecasting in earth system science: Methods, uncertainties, predictability and future directions. Earth-Science Reviews, 2021, 222, 103828.	4.0	46
25	Spatiotemporal Changes in China's Terrestrial Water Storage From GRACE Satellites and Its Possible Drivers. Journal of Geophysical Research D: Atmospheres, 2019, 124, 11976-11993.	1.2	44
26	ROSCC: An Efficient Remote Sensing Observation-Sharing Method Based on Cloud Computing for Soil Moisture Mapping in Precision Agriculture. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9, 5588-5598.	2.3	42
27	Improving the North American multi-model ensemble (NMME) precipitation forecasts at local areas using wavelet and machine learning. Climate Dynamics, 2019, 53, 601-615.	1.7	42
28	Drought propagation modification after the construction of the Three Gorges Dam in the Yangtze River Basin. Journal of Hydrology, 2021, 603, 127138.	2.3	39
29	A heterogeneous sensor web node meta-model for the management of a flood monitoring system. Environmental Modelling and Software, 2014, 54, 222-237.	1.9	38
30	Evaluation of six satellite- and model-based surface soil temperature datasets using global ground-based observations. Remote Sensing of Environment, 2021, 264, 112605.	4.6	38
31	Use of ebRIM-based CSW with sensor observation services for registry and discovery of remote-sensing observations. Computers and Geosciences, 2009, 35, 360-372.	2.0	37
32	An Improved Genetic Algorithm Coupling a Back-Propagation Neural Network Model (IGA-BPNN) for Water-Level Predictions. Water (Switzerland), 2019, 11, 1795.	1.2	34
33	A parametric multivariate drought index for drought monitoring and assessment under climate change. Agricultural and Forest Meteorology, 2021, 310, 108657.	1.9	34
34	Downscaling and Projection of Multi-CMIP5 Precipitation Using Machine Learning Methods in the Upper Han River Basin. Advances in Meteorology, 2020, 2020, 1-17.	0.6	31
35	Cyber-Physical Geographical Information Service-Enabled Control of Diverse In-Situ Sensors. Sensors, 2015, 15, 2565-2592.	2.1	29
36	A Machine Learning Based Reconstruction Method for Satellite Remote Sensing of Soil Moisture Images with In Situ Observations. Remote Sensing, 2017, 9, 484.	1.8	29

#	Article	IF	CITATIONS
37	A Flexible Data and Sensor Planning Service for Virtual Sensors Based on Web Service. IEEE Sensors Journal, 2011, 11, 1429-1439.	2.4	27
38	A Sharable and Interoperable Meta-Model for Atmospheric Satellite Sensors and Observations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5, 1519-1530.	2.3	27
39	A Hydrological Sensor Web Ontology Based on the SSN Ontology: A Case Study for a Flood. ISPRS International Journal of Geo-Information, 2018, 7, 2.	1.4	27
40	A spatiotemporal deep learning model ST-LSTM-SA for hourly rainfall forecasting using radar echo images. Journal of Hydrology, 2022, 609, 127748.	2.3	27
41	A comparison of large-scale climate signals and the North American Multi-Model Ensemble (NMME) for drought prediction in China. Journal of Hydrology, 2018, 557, 378-390.	2.3	26
42	A data-driven multi-model ensemble for deterministic and probabilistic precipitation forecasting at seasonal scale. Climate Dynamics, 2020, 54, 3355-3374.	1.7	26
43	Using SensorML to construct a geoprocessing e-Science workflow model under a sensor web environment. Computers and Geosciences, 2012, 47, 119-129.	2.0	25
44	Classifying diurnal changes of cyanobacterial blooms in Lake Taihu to identify hot patterns, seasons and hotspots based on hourly GOCI observations. Journal of Environmental Management, 2022, 310, 114782.	3.8	25
45	RESTFul based heterogeneous Geoprocessing workflow interoperation for Sensor Web Service. Computers and Geosciences, 2012, 47, 102-110.	2.0	24
46	Urbanization in Small Cities and Their Significant Implications on Landscape Structures: The Case in Ethiopia. Sustainability, 2020, 12, 1235.	1.6	24
47	Research and Analysis of Ecological Environment Quality in the Middle Reaches of the Yangtze River Basin between 2000 and 2019. Remote Sensing, 2021, 13, 4475.	1.8	23
48	NIR-Red Spectra-Based Disaggregation of SMAP Soil Moisture to 250 m Resolution Based on OzNet in Southeastern Australia. Remote Sensing, 2017, 9, 51.	1.8	21
49	Relationship between air quality and economic development in the provincial capital cities of China. Environmental Science and Pollution Research, 2017, 24, 2928-2935.	2.7	20
50	Mapping Paddy Rice Fields by Combining Multi-Temporal Vegetation Index and Synthetic Aperture Radar Remote Sensing Data Using Google Earth Engine Machine Learning Platform. Remote Sensing, 2020, 12, 2992.	1.8	20
51	Reconstruction of GF-1 Soil Moisture Observation Based on Satellite and <italic>In Situ</italic> Sensor Collaboration Under Full Cloud Contamination. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 5185-5202.	2.7	19
52	Integrating spatial nonstationarity into SLEUTH for urban growth modeling: A case study in the Wuhan metropolitan area. Computers, Environment and Urban Systems, 2020, 84, 101545.	3.3	19
53	Using Multi-Temporal MODIS NDVI Data to Monitor Tea Status and Forecast Yield: A Case Study at Tanuyen, Laichau, Vietnam. Remote Sensing, 2020, 12, 1814.	1.8	19
54	A capability matching and ontology reasoning method for high precision OGC web service discovery. International Journal of Digital Earth, 2011, 4, 449-470.	1.6	18

#	Article	IF	CITATIONS
55	An Observation Capability Metadata Model for EO Sensor Discovery in Sensor Web Enablement Environments. Remote Sensing, 2014, 6, 10546-10570.	1.8	18
56	Quantitative evaluation of observation capability of GF-1 wide field of view sensors for soil moisture inversion. Journal of Applied Remote Sensing, 2015, 9, 097097.	0.6	18
5 7	Spatial Configuration and Extent Explains the Urban Heat Mitigation Potential due to Green Spaces: Analysis over Addis Ababa, Ethiopia. Remote Sensing, 2020, 12, 2876.	1.8	18
58	An Efficient Method for Near-Real-Time On-Demand Retrieval of Remote Sensing Observations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4, 615-625.	2.3	17
59	A risk assessment method for remote sensing of cyanobacterial blooms in inland waters. Science of the Total Environment, 2020, 740, 140012.	3.9	17
60	City2vec: Urban knowledge discovery based on population mobile network. Sustainable Cities and Society, 2022, 85, 104000.	5.1	17
61	Active on-demand service method based on event-driven architecture for geospatial data retrieval. Computers and Geosciences, 2013, 56, 1-11.	2.0	16
62	Progress and challenges in the architecture and service pattern of Earth Observation Sensor Web for Digital Earth. International Journal of Digital Earth, 2014, 7, 935-951.	1.6	16
63	Optimizing the configuration of precipitation stations in a space-ground integrated sensor network based on spatial-temporal coverage maximization. Journal of Hydrology, 2017, 548, 625-640.	2.3	16
64	FLCNDEMF: An Event Metamodel for Flood Process Information Management under the Sensor Web Environment. Remote Sensing, 2015, 7, 7231-7256.	1.8	15
65	Optimizing precipitation station location: a case study of the Jinsha River Basin. International Journal of Geographical Information Science, 2016, 30, 1207-1227.	2.2	15
66	Satellite Monitoring of Urban Land Change in the Middle Yangtze River Basin Urban Agglomeration, China between 2000 and 2016. Remote Sensing, 2017, 9, 1086.	1.8	15
67	An improved fusion crossover genetic algorithm for a time-weighted maximal covering location problem for sensor siting under satellite-borne monitoring. Computers and Geosciences, 2020, 136, 104406.	2.0	15
68	A Novel Fusion Method for Generating Surface Soil Moisture Data With High Accuracy, High Spatial Resolution, and High Spatioâ€Temporal Continuity. Water Resources Research, 2022, 58, .	1.7	15
69	SCRMS: An RFID and Sensor Web-Enabled Smart Cultural Relics Management System. Sensors, 2017, 17, 60.	2.1	14
70	Event-Driven Distributed Information Resource-Focusing Service for Emergency Response in Smart City with Cyber-Physical Infrastructures. ISPRS International Journal of Geo-Information, 2017, 6, 251.	1.4	14
71	A Method for Urban Flood Risk Assessment and Zoning Considering Road Environments and Terrain. Sustainability, 2019, 11, 2734.	1.6	14
72	An automatic SWILC classification and extraction for the AntSDI under a Sensor Web environment. Canadian Journal of Remote Sensing, 2010, 36, S1-S12.	1.1	13

#	Article	IF	CITATIONS
73	A Dynamic Observation Capability Index for Quantitatively Pre-Evaluating Diverse Optical Imaging Satellite Sensors. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7, 515-530.	2.3	13
74	A New Geo-Propagation Model of Event Evolution Chain Based on Public Opinion and Epidemic Coupling. International Journal of Environmental Research and Public Health, 2020, 17, 9235.	1.2	13
75	Urbanization-induced drought modification: Example over the Yangtze River Basin, China. Urban Climate, 2022, 44, 101231.	2.4	13
76	A framework design for the Chinese National Disaster Reduction System of Systems (CNDRSS). International Journal of Digital Earth, 2014, 7, 68-87.	1.6	12
77	Capability representation model for heterogeneous remote sensing sensors: Case study on soil moisture monitoring. Environmental Modelling and Software, 2015, 70, 65-79.	1.9	12
78	Efficient Streaming Mass Spatio-Temporal Vehicle Data Access in Urban Sensor Networks Based on Apache Storm. Sensors, 2017, 17, 815.	2.1	12
79	An Observational Process Ontology-Based Modeling Approach for Water Quality Monitoring. Water (Switzerland), 2020, 12, 715.	1.2	12
80	Next-Generation Soil Moisture Sensor Web: High-Density In Situ Observation Over NB-IoT. IEEE Internet of Things Journal, 2021, 8, 13367-13383.	5.5	12
81	A node semantic similarity schema-matching method for multi-version Web Coverage Service retrieval. International Journal of Geographical Information Science, 2012, 26, 1051-1072.	2.2	11
82	A direct registry service method for sensors and algorithms based on the process model. Computers and Geosciences, 2013, 56, 45-55.	2.0	11
83	A Cloud Computing-Enabled Spatio-Temporal Cyber-Physical Information Infrastructure for Efficient Soil Moisture Monitoring. ISPRS International Journal of Geo-Information, 2016, 5, 81.	1.4	11
84	Earth observation metadata ontology model for spatiotemporal-spectral semantic-enhanced satellite observation discovery: a case study of soil moisture monitoring. GIScience and Remote Sensing, 2016, 53, 22-44.	2.4	11
85	An on-demand scheme driven by the knowledge of geospatial distribution for large-scale high-resolution impervious surface mapping. GIScience and Remote Sensing, 2021, 58, 562-586.	2.4	11
86	NDVI Variation and Yield Prediction in Growing Season: A Case Study with Tea in Tanuyen Vietnam. Atmosphere, 2021, 12, 962.	1.0	11
87	Generating high-accuracy and cloud-free surface soil moisture at 1 km resolution by point-surface data fusion over the Southwestern U.S Agricultural and Forest Meteorology, 2022, 321, 108985.	1.9	11
88	Geospatial Web-based Sensor Information Model for Integrating Satellite Observation. Photogrammetric Engineering and Remote Sensing, 2013, 79, 915-927.	0.3	10
89	Optimizing the configuration of streamflow stations based on coverage maximization: A case study of the Jinsha River Basin. Journal of Hydrology, 2015, 527, 172-183.	2.3	10
90	Online soil moisture retrieval and sharing using geospatial web-enabled BDS-R service. Computers and Electronics in Agriculture, 2016, 121, 354-367.	3.7	10

NENGCHENG CHEN

#	Article	IF	CITATIONS
91	DMBLC: An Indirect Urban Impervious Surface Area Extraction Approach by Detecting and Masking Background Land Cover on Google Earth Image. Remote Sensing, 2018, 10, 766.	1.8	10
92	Sensor web - Enabled flood event process detection and instant service. Environmental Modelling and Software, 2019, 117, 29-42.	1.9	10
93	Construction and Evaluation of the Integrated Perception Ecological Environment Indicator (IPEEI) Based on the DPSIR Framework for Smart Sustainable Cities. Sustainability, 2020, 12, 7112.	1.6	10
94	Design and Implementation of Geospatial Sensor Web Information Public Service Platform. Geo-information Science, 2013, 15, 887.	0.1	10
95	Quantifying the uncertainty of precipitation forecasting using probabilistic deep learning. Hydrology and Earth System Sciences, 2022, 26, 2923-2938.	1.9	10
96	An active monitoring method for flood events. Computers and Geosciences, 2018, 116, 42-52.	2.0	9
97	An Observation Capability Information Association Model for Multisensor Observation Integration Management: A Flood Observation Use Case in the Yangtze River Basin. IEEE Sensors Journal, 2019, 19, 11510-11525.	2.4	9
98	RFim: A Real-Time Inundation Extent Model for Large Floodplains Based on Remote Sensing Big Data and Water Level Observations. Remote Sensing, 2019, 11, 1585.	1.8	9
99	Potential Precipitation Predictability Decreases Under Future Warming. Geophysical Research Letters, 2020, 47, e2020GL090798.	1.5	9
100	PM2.5 Estimation and Spatial-Temporal Pattern Analysis Based on the Modified Support Vector Regression Model and the 1 km Resolution MAIAC AOD in Hubei, China. ISPRS International Journal of Geo-Information, 2021, 10, 31.	1.4	9
101	WHU-SGCC: a novel approach for blending daily satellite (CHIRP) and precipitation observations over the Jinsha River basin. Earth System Science Data, 2019, 11, 1711-1744.	3.7	9
102	A Sharable and Efficient Metadata Model for Heterogeneous Earth Observation Data Retrieval in Multi-Scale Flood Mapping. Remote Sensing, 2015, 7, 9610-9631.	1.8	8
103	Early Warning of Abrupt Displacement Change at the Yemaomian Landslide of the Three Gorge Region, China. Natural Hazards Review, 2015, 16, 04015004.	0.8	8
104	A Semantic Registry Method Using Sensor Metadata Ontology to Manage Heterogeneous Sensor Information in the Geospatial Sensor Web. ISPRS International Journal of Geo-Information, 2016, 5, 63.	1.4	8
105	Gauging the Severity of the 2012 Midwestern U.S. Drought for Agriculture. Remote Sensing, 2017, 9, 767.	1.8	8
106	Feasibility of using signal strength indicator data to estimate soil moisture based on GNSS interference signal analysis. Remote Sensing Letters, 2018, 9, 61-70.	0.6	8
107	An Observation Capability Semantic-Associated Approach to the Selection of Remote Sensing Satellite Sensors: A Case Study of Flood Observations in the Jinsha River Basin. Sensors, 2018, 18, 1649.	2.1	8
108	Modeling the Relationship of Precipitation and Water Level Using Grid Precipitation Products with a Neural Network Model. Remote Sensing, 2020, 12, 1096.	1.8	8

NENGCHENG CHEN

#	Article	IF	CITATIONS
109	Spatial Pattern and Temporal Variation Law-Based Multi-Sensor Collaboration Method for Improving Regional Soil Moisture Monitoring Capabilities. Remote Sensing, 2014, 6, 12309-12333.	1.8	7
110	An Object Model for Integrating Diverse Remote Sensing Satellite Sensors: A Case Study of Union Operation. Remote Sensing, 2014, 6, 677-699.	1.8	7
111	An Efficient Method of Sharing Mass Spatio-Temporal Trajectory Data Based on Cloudera Impala for Traffic Distribution Mapping in an Urban City. Sensors, 2016, 16, 1813.	2.1	7
112	Soil moisture estimation based on BeiDou B1 interference signal analysis. Science China Earth Sciences, 2016, 59, 2427-2440.	2.3	7
113	Extended FRAG-BASE schema-matching method for multi-version open GIS Web services retrieval. International Journal of Geographical Information Science, 2011, 25, 1045-1068.	2.2	6
114	SOCO-Field: observation capability representation for GeoTask-oriented multi-sensor planning cognition. International Journal of Geographical Information Science, 2020, 34, 205-228.	2.2	6
115	Linear and nonlinear causal relationships between the dry/wet conditions and teleconnection indices in the Yangtze River basin. Atmospheric Research, 2022, 275, 106249.	1.8	6
116	Spatio-temporal enabled urban decision-making process modeling and visualization under the cyber-physical environment. Science China Information Sciences, 2015, 58, 1-17.	2.7	5
117	Cloud computing driven efficient mapping on soil moisture under sensor web environment. , 2016, , .		5
118	Topology Adaptive Water Boundary Extraction Based on a Modified Balloon Snake: Using GF-1 Satellite Images as an Example. Remote Sensing, 2017, 9, 140.	1.8	5
119	A Spatio-Temporal Enhanced Metadata Model for Interdisciplinary Instant Point Observations in Smart Cities. ISPRS International Journal of Geo-Information, 2017, 6, 50.	1.4	5
120	Influence of Terrestrial Water Storage on Flood Potential Index in the Yangtze River Basin, China. Remote Sensing, 2022, 14, 3082.	1.8	5
121	Representing Geospatial Environment Observation Capability Information: A Case Study of Managing Flood Monitoring Sensors in the Jinsha River Basin. Sensors, 2016, 16, 2144.	2.1	4
122	A DLM-LSTM Framework for North-South Land Deformation Trend Analysis from Low-Cost GPS Sensor Time Series. Journal of Sensors, 2018, 2018, 1-11.	0.6	4
123	A Real-Time and Open Geographic Information System and Its Application for Smart Rivers: A Case Study of the Yangtze River. ISPRS International Journal of Geo-Information, 2019, 8, 114.	1.4	4
124	Using reflected signal power from the BeiDou geostationary satellites to estimate soil moisture. Remote Sensing Letters, 2019, 10, 1-10.	0.6	4
125	Provenance Information Representation and Tracking for Remote Sensing Observations in a Sensor Web Enabled Environment. Remote Sensing, 2015, 7, 7646-7670.	1.8	3
126	Spaceborne Earth-Observing Optical Sensor Static Capability Index for Clustering. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 5504-5518.	2.7	3

#	Article	IF	CITATIONS
127	Spatio-Temporal Risk Assessment Process Modeling for Urban Hazard Events in Sensor Web Environment. ISPRS International Journal of Geo-Information, 2016, 5, 203.	1.4	3
128	Distributed Geoscience Algorithm Integration Based on OWS Specifications: A Case Study of the Extraction of a River Network. ISPRS International Journal of Geo-Information, 2019, 8, 12.	1.4	3
129	An Ontology-Based Framework for Integrating Remote Sensing Imagery, Image Products, and In Situ Observations. Journal of Sensors, 2020, 2020, 1-12.	0.6	3
130	The cloud computing for a dynamic agro-geoinformation processing. , 2012, , .		2
131	Integrated geosptial sensor web for agricultural soil moisture monitoring. , 2015, , .		2
132	A Genetic Algorithm–Assisted Deep Neural Network Model for Merging Microwave and Infrared Daily Sea Surface Temperature Products. Frontiers in Environmental Science, 2021, 9, .	1.5	1
133	Modeling and management of Baoxie sensor web resources based on the node meta-model. , 2014, , .		0
134	Pull-Based Modeling and Algorithms for Real-Time Provision of High-Frequency Sensor Data from Sensor Observation Services. ISPRS International Journal of Geo-Information, 2016, 5, 51.	1.4	0
135	An RFID and sensor web-enabled smart electric power equipment inspection system. , 2017, , .		0
136	SWRO-DDPM: A Sensor Web Resource Ontology for the Dynamic Disaster Process Monitoring. , 2018, , .		0
137	Assessment of Four Model-Based Surface Soil Temperature Products Unsing Clobal Dense in Situ Observations. , 2021, , .		0
138	W-Shaped Selection for Light Field Super-Resolution. Lecture Notes in Computer Science, 2018, , 148-159.	1.0	0
139	Editorial: Geospatial Understanding of Sustainable Urban Analytics Using Remote Sensing. Remote Sensing, 2022, 14, 2748.	1.8	0