Wenxia Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4081510/publications.pdf

Version: 2024-02-01

		567281	610901
50	720	15	24
papers	citations	h-index	24 g-index
50	50	50	1001
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	High-efficiency red photoluminescence achieved by antimony doping in organic–inorganic halide (C ₁₁ H ₂₄ N ₂) ₂ [InBr ₆][InBr ₄]. Journal of Materials Chemistry C, 2022, 10, 5905-5913.	5.5	17
2	Effect of Cu Doping on Structure and Physical Properties in the Antiferromagnetic Dirac Semimetal CaMnBi ₂ . Inorganic Chemistry, 2022, 61, 4592-4597.	4.0	1
3	Zero-Dimensional Lead-Free Halide with Indirect Optical Gap and Enhanced Photoluminescence by Sb Doping. Journal of Physical Chemistry Letters, 2022, 13, 198-207.	4.6	35
4	Electron Doping and Physical Properties in the Ferromagnetic Semimetal Co ₃ Sn _{2–<i>x</i>} Sb _{<i>x</i>} S ₂ . Journal of Physical Chemistry C, 2022, 126, 7230-7237.	3.1	1
5	A(NH ₃) _x FePS ₃ (A = Li, K): intercalated Fe thiophosphate <i>via</i> the liquid ammonia method. Materials Chemistry Frontiers, 2021, 5, 2715-2723.	5.9	3
6	Local Distortions and Metalâ \in "Semiconductorâ \in "Metal Transition in Quasi-One-Dimensional Nanowire Compounds AV $<$ sub $>3sub>0<sub>1sub>1<sub>1<sub>0<sub>1<sub>0<sub>1<sub>0<sub>1<sub>0<sub>1<sub>0<sub>1<sub>0<sub>1<sub>0<sub>1<sub>0<sub>1<sub>0<sub>1<sub>0<sub>1<sub>0<sub>1<sub>0<sub>1<sub>0<sub>1<sub>0<sub>1<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<sub>0<$	6.7	6
7	Light-Emitting 0D Hybrid Metal Halide (C ₃ H ₁₂ N ₂) ₂ Sb ₂ Cl ₁₀ with Antimony Dimers. Inorganic Chemistry, 2021, 60, 11429-11434.	4.0	13
8	Structure and Optical Properties of Hybrid-Layered-Double Perovskites $(C \cdot sub \cdot 8 \cdot sub \cdot 4 \cdot sub \cdot 20 \cdot sub \cdot 4 \cdot sub \cdot 20 \cdot $	4.0	7
9	Layered quaternary chalcogenides KMgCuSe2 and KMgCuTe2 with paramagnetic semiconducting behavior. Journal of Alloys and Compounds, 2021, 883, 160820.	5.5	4
10	High electron mobility and transverse negative magnetoresistance in van der Waals material Nb ₂ GeTe ₄ . Materials Chemistry Frontiers, 2021, 5, 8275-8280.	5.9	2
11	High active crystalline $\{1\ 1\ 0\}$ facets with high surface energy in Tin monoxide photocatalyst. Inorganic Chemistry Communication, 2021, 134, 109043.	3.9	1
12	Tunable K vacancies in K1 \hat{a} °Co2Se2 and their effects on structure and ferromagnetism. Journal of Magnetism and Magnetic Materials, 2019, 490, 165473.	2.3	2
13	Structure and physical properties of Ni-based quasi-one-dimensional selenides Rb0.9Ni3.1Se3 and K0.7Ni3.1Se3. Journal of Alloys and Compounds, 2019, 793, 425-432.	5.5	6
14	Synthesis, structure and superconductivity of FeS _{1â^'x} Se _x (0 ≤i>x ≤) solid solution crystals. CrystEngComm, 2019, 21, 2994-2999.	2.6	8
15	The transition between antiferromagnetic order and spin-glass state in layered chalcogenides KFeAgCh2 (Ch = Se, S). Journal of Solid State Chemistry, 2019, 272, 126-130.	2.9	10
16	Hexagonal SiC with spatially separated active sites on polar and nonpolar facets achieving enhanced hydrogen production from photocatalytic water reduction. Physical Chemistry Chemical Physics, 2018, 20, 4787-4792.	2.8	16
17	A new intercalated iron sulfide (C2H8N2)0.4Fe2S2 from solvothermal route: Synthesis, structure and tunable magnetism. Inorganic Chemistry Communication, 2018, 91, 72-76.	3.9	12
18	Cs _{0.9} Ni _{3.1} Se ₃ : A Ni-Based Quasi-One-Dimensional Conductor with Spin-Glass Behavior. Inorganic Chemistry, 2018, 57, 3798-3804.	4.0	7

#	Article	IF	CITATIONS
19	All carbon materials pn diode. Nature Communications, 2018, 9, 3750.	12.8	22
20	Enhanced photocatalytic hydrogen production over Au/SiC for water reduction by localized surface plasmon resonance effect. Applied Surface Science, 2018, 456, 871-875.	6.1	25
21	Efficient Heterojunctions via the in Situ Self-Assembly of BiVO (sub) 4 (/sub) Quantum Dots on SiC Facets for Enhanced Photocatalysis. ACS Applied Nano Materials, 2018, 1, 4594-4601.	5.0	16
22	A Si–O–Si bridge assembled from 3-mercaptopropyltrimethoxysilane and silicon carbide for effective charge transfer in photocatalysis. Journal of Materials Science, 2018, 53, 12432-12440.	3.7	12
23	S/Te co-doping in tetragonal FeSe with unchanged lattice parameters: Effects on superconductivity and electronic structure. Journal of Alloys and Compounds, 2017, 700, 43-48.	5.5	13
24	Iron vacancy in tetragonal Fe _{1â^'x} S crystals and its effect on the structure and superconductivity. Physical Chemistry Chemical Physics, 2017, 19, 9000-9006.	2.8	18
25	KFeCuTe ₂ : a new compound to study the removal of interstitial Fe in layered tellurides. Dalton Transactions, 2017, 46, 3649-3654.	3.3	11
26	Spatial separation of Pt and IrO 2 cocatalysts on SiC surface for enhanced photocatalysis. Materials Letters, 2017, 201, 114-117.	2.6	24
27	Chemical Intercalations in Layered Transition Metal Chalcogenides: Syntheses, Structures, and Related Properties. Crystal Growth and Design, 2017, 17, 2238-2253.	3.0	32
28	K _x (C ₂ H ₈ N ₂) _y Fe _{2â^²z} S _{2+ intercalation and Fe depletion. RSC Advances, 2017, 7, 17539-17544.})>: 3.6	10
29	Improved H 2 evolution under visible light in heterostructured SiC/CdS photocatalyst: Effect of lattice match. International Journal of Hydrogen Energy, 2017, 42, 14409-14417.	7.1	19
30	Effectively Improving Extinction Coefficient of Benzodithiophene and Benzodithiophenedioneâ€based Photovoltaic Polymer by Grafting Alkylthio Functional Groups. Chemistry - an Asian Journal, 2016, 11, 2650-2655.	3.3	11
31	High-efficient photo-electron transport channel in SiC constructed by depositing cocatalysts selectively on specific surface sites for visible-light H2 production. Applied Physics Letters, 2016, 108, .	3.3	10
32	Ferromagnetic interlayer interaction in KCo2Se2â^'xSx (0 ≤ ≤) and its chemical origin. Dalton Transactions, 2016, 45, 8248-8252.	3.3	15
33	Bipolar Carrier Transfer Channels in Epitaxial Graphene/SiC Core–Shell Heterojunction for Efficient Photocatalytic Hydrogen Evolution. Advanced Materials, 2015, 27, 7986-7991.	21.0	42
34	Phase assemblages of the K–Fe–Se ternary system (x KÂ<Â33.3Â%) and the metastability of superconducting phase in this area. Monatshefte Für Chemie, 2015, 146, 1807-1813.	1.8	1
35	A simple route to significant enhancement of photocatalytic water oxidation on BiVO4 by heterojunction with SiC. Chemical Engineering Journal, 2015, 281, 102-108.	12.7	34
36	Heterogeneous nucleation of CdS to enhance visible-light photocatalytic hydrogen evolution of SiC/CdS composite. Applied Physics Letters, 2015, 107, .	3.3	12

#	Article	IF	CITATIONS
37	Visible light induced photocatalytic overall water splitting over micro-SiC driven by the Z-scheme system. Catalysis Communications, 2015, 61, 53-56.	3.3	15
38	Enhanced photocatalytic H ₂ evolution over micro-SiC by coupling with CdS under visible light irradiation. Journal of Materials Chemistry A, 2014, 2, 6296-6300.	10.3	73
39	Homogeneous dispersion of high-conductive reduced graphene oxide sheets for polymethylmethacrylate nanocomposites. Powder Diffraction, 2014, 29, 241-247.	0.2	7
40	Mechanism of Water Splitting to Hydrogen by Silicon Carbide Nanoparticles. Science of Advanced Materials, 2013, 5, 155-159.	0.7	16
41	Investigation of Ta/Ni bilayered ohmic contacts on n-type SiC single-crystal substrate. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2012, 143, 1329-1334.	1.8	7
42	Density and surface tension of liquid Bi–Cu–Sn alloys. Monatshefte Fýr Chemie, 2012, 143, 1617-1622.	1.8	5
43	Surface tension of liquid Au-Bi-Sn alloys. Rare Metals, 2012, 31, 250-254.	7.1	6
44	Thermodynamic properties of liquid Au–Bi–Sn alloys. Journal of Chemical Thermodynamics, 2012, 48, 201-206.	2.0	6
45	The density and surface tension of In–Sn and Cu–In–Sn alloys. Monatshefte Für Chemie, 2011, 142, 579-584.	1.8	17
46	Preparation of Single- and Few-Layer Graphene Sheets Using Co Deposition on SiC Substrate. Journal of Nanomaterials, 2011, 2011, 1-7.	2.7	30
47	Thermodynamic Assessment of the Si-Ta and Si-W Systems. Journal of Phase Equilibria and Diffusion, 2009, 30, 564-570.	1.4	39
48	Chemical reactions in the Co–Si–C system. Powder Diffraction, 2008, 23, 329-333.	0.2	4
49	Syntheses and crystal structures of trigonal rare-earth dioxymonocyanamides, Ln2O2CN2 (Ln=Dy, Ho,) Tj ETQq1	1 0.7843	14 rgBT /Ove
50	Pt3Ga: Thermodynamics and Nonstoichiometry. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2004, 59, 999-1005.	0.7	3