Rainer Merkl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4081486/publications.pdf Version: 2024-02-01

RAINED MEDKI

#	Article	IF	CITATIONS
1	Towards Photochromic Azobenzeneâ€Based Inhibitors for Tryptophan Synthase. Chemistry - A European Journal, 2021, 27, 2439-2451.	3.3	11
2	Reprogramming the Specificity of a Protein Interface by Computational and Data-Driven Design. Structure, 2021, 29, 292-304.e3.	3.3	2
3	Rosetta design with co-evolutionary information retains protein function. PLoS Computational Biology, 2021, 17, e1008568.	3.2	12
4	Sequence and functional differences in the ATPase domains of CHD3 and SNF2H promise potential for selective regulability and drugability. FEBS Journal, 2021, 288, 4000-4023.	4.7	2
5	Evidence for the preferential reuse of subâ€domain motifs in primordial protein folds. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1167-1179.	2.6	2
6	Rosetta:MSF:NN: Boosting performance of multi-state computational protein design with a neural network. PLoS ONE, 2021, 16, e0256691.	2.5	1
7	Analysis of allosteric communication in a multienzyme complex by ancestral sequence reconstruction. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 346-354.	7.1	26
8	Conserved genomic neighborhood is a strong but no perfect indicator for a direct interaction of microbial gene products. BMC Bioinformatics, 2020, 21, 5.	2.6	11
9	Light-Regulation of Tryptophan Synthase by Combining Protein Design and Enzymology. International Journal of Molecular Sciences, 2019, 20, 5106.	4.1	8
10	The long nonâ€coding <scp>RNA LINC</scp> 00941 and <scp>SPRR</scp> 5 are novel regulators of human epidermal homeostasis. EMBO Reports, 2019, 20, .	4.5	29
11	Light Regulation of Enzyme Allostery through Photo-responsive Unnatural Amino Acids. Cell Chemical Biology, 2019, 26, 1501-1514.e9.	5.2	25
12	A Fold-Independent Interface Residue Is Crucial for Complex Formation and Allosteric Signaling in Class I Glutamine Amidotransferases. Biochemistry, 2019, 58, 2584-2588.	2.5	10
13	Prediction of quaternary structure by analysis of hot spot residues in proteinâ€protein interfaces: the case of anthranilate phosphoribosyltransferases. Proteins: Structure, Function and Bioinformatics, 2019, 87, 815-825.	2.6	18
14	Mapping the Allosteric Communication Network of Aminodeoxychorismate Synthase. Journal of Molecular Biology, 2019, 431, 2718-2728.	4.2	11
15	Identification of the retinoschisin-binding site on the retinal Na/K-ATPase. PLoS ONE, 2019, 14, e0216320.	2.5	13
16	Functional characterisation of two Δ12-desaturases demonstrates targeted production of linoleic acid as pheromone precursor in <i>Nasonia</i> . Journal of Experimental Biology, 2019, 222, .	1.7	16
17	Elucidation of the functional roles of the Q and I motifs in the human chromatin-remodeling enzyme BRG1. Journal of Biological Chemistry, 2019, 294, 3294-3310.	3.4	6
18	Sequence selection by FitSS4ASR alleviates ancestral sequence reconstruction as exemplified for geranylgeranylglyceryl phosphate synthase. Biological Chemistry, 2019, 400, 367-381.	2.5	4

#	Article	IF	CITATIONS
19	Ancestral Sequence Reconstruction as a Tool for the Elucidation of a Stepwise Evolutionary Adaptation. Methods in Molecular Biology, 2019, 1851, 171-182.	0.9	4
20	Characterizing the nuclease accessibility of DNA in human cells to map higher order structures of chromatin. Nucleic Acids Research, 2019, 47, 1239-1254.	14.5	40
21	Relationship of Catalysis and Active Site Loop Dynamics in the (βα) ₈ -Barrel Enzyme Indole-3-glycerol Phosphate Synthase. Biochemistry, 2018, 57, 3265-3277.	2.5	12
22	The Adaptor Protein ENY2 Is a Component of the Deubiquitination Module of the Arabidopsis SAGA Transcriptional Co-activator Complex but not of the TREX-2 Complex. Journal of Molecular Biology, 2018, 430, 1479-1494.	4.2	28
23	Hexamerization of Geranylgeranylglyceryl Phosphate Synthase Ensures Structural Integrity and Catalytic Activity at High Temperatures. Biochemistry, 2018, 57, 2335-2348.	2.5	10
24	Development of photoswitchable inhibitors for β-galactosidase. Organic and Biomolecular Chemistry, 2018, 16, 7430-7437.	2.8	16
25	Artificial Light Regulation of an Allosteric Bienzyme Complex by a Photosensitive Ligand. ChemBioChem, 2018, 19, 1750-1757.	2.6	19
26	Pathomechanism of mutated and secreted retinoschisin in X-linked juvenile retinoschisis. Experimental Eye Research, 2018, 177, 23-34.	2.6	14
27	The Arabidopsis THO/TREX component TEX1 functionally interacts with MOS11 and modulates mRNA export and alternative splicing events. Plant Molecular Biology, 2017, 93, 283-298.	3.9	39
28	Combining ancestral sequence reconstruction with protein design to identify an interface hotspot in a key metabolic enzyme complex. Proteins: Structure, Function and Bioinformatics, 2017, 85, 312-321.	2.6	14
29	Evolutionary diversification of protein–protein interactions by interface add-ons. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8333-E8342.	7.1	22
30	AGeNNT: annotation of enzyme families by means of refined neighborhood networks. BMC Bioinformatics, 2017, 18, 274.	2.6	7
31	Assessing in silico the recruitment and functional spectrum of bacterial enzymes from secondary metabolism. BMC Evolutionary Biology, 2017, 17, 36.	3.2	3
32	Rosetta:MSF: a modular framework for multi-state computational protein design. PLoS Computational Biology, 2017, 13, e1005600.	3.2	43
33	Gene silencing pathways found in the green alga Volvox carteri reveal insights into evolution and origins of small RNA systems in plants. BMC Genomics, 2016, 17, 853.	2.8	15
34	Reconstruction of ancestral enzymes. Perspectives in Science, 2016, 9, 17-23.	0.6	22
35	Ancestral Tryptophan Synthase Reveals Functional Sophistication of Primordial Enzyme Complexes. Cell Chemical Biology, 2016, 23, 709-715.	5.2	31
36	Ancestral protein reconstruction: techniques and applications. Biological Chemistry, 2016, 397, 1-21.	2.5	121

#	Article	IF	CITATIONS
37	Long-Term Persistence of Bi-functionality Contributes to the Robustness of Microbial Life through Exaptation. PLoS Genetics, 2016, 12, e1005836.	3.5	18
38	Plasmodium falciparum Nucleosomes Exhibit Reduced Stability and Lost Sequence Dependent Nucleosome Positioning. PLoS Pathogens, 2016, 12, e1006080.	4.7	18
39	An assessment of catalytic residue 3D ensembles for the prediction of enzyme function. BMC Bioinformatics, 2015, 16, 359.	2.6	3
40	Conversion of Anthranilate Synthase into Isochorismate Synthase: Implications for the Evolution of Chorismateâ€Utilizing Enzymes. Angewandte Chemie - International Edition, 2015, 54, 11270-11274.	13.8	14
41	Maize EMBRYO SAC family peptides interact differentially with pollen tubes and fungal cells. Journal of Experimental Botany, 2015, 66, 5205-5216.	4.8	16
42	Improving thermal and detergent stability of Bacillus stearothermophilus neopullulanase by rational enzyme design. Protein Engineering, Design and Selection, 2015, 28, 147-151.	2.1	14
43	The extended AT-hook is a novel RNA binding motif. RNA Biology, 2015, 12, 864-876.	3.1	47
44	Evidence for the Existence of Elaborate Enzyme Complexes in the Paleoarchean Era. Journal of the American Chemical Society, 2014, 136, 122-129.	13.7	51
45	Exploiting Protein Symmetry To Design Lightâ€Controllable Enzyme Inhibitors. Angewandte Chemie - International Edition, 2014, 53, 595-598.	13.8	61
46	Generation of catalytic human Ago4 identifies structural elements important for RNA cleavage. Rna, 2014, 20, 1532-1538.	3.5	31
47	H2rs: Deducing evolutionary and functionally important residue positions by means of an entropy and similarity based analysis of multiple sequence alignments. BMC Bioinformatics, 2014, 15, 118.	2.6	9
48	The NHL domain of BRAT is an RNA-binding domain that directly contacts the <i>hunchback</i> mRNA for regulation. Genes and Development, 2014, 28, 749-764.	5.9	74
49	TrpB2 Enzymes are <i>O</i> -Phospho- <scp>l</scp> -serine Dependent Tryptophan Synthases. Biochemistry, 2014, 53, 6078-6083.	2.5	6
50	Oleic acid is a precursor of linoleic acid and the male sex pheromone in Nasonia vitripennis. Insect Biochemistry and Molecular Biology, 2014, 51, 33-40.	2.7	45
51	CLIPS-4D: a classifier that distinguishes structurally and functionally important residue-positions based on sequence and 3D data. Bioinformatics, 2013, 29, 3029-3035.	4.1	8
52	Turning catalytically inactive human Argonaute proteins into active slicer enzymes. Nature Structural and Molecular Biology, 2013, 20, 814-817.	8.2	89
53	Focus on Molecules: Norrin. Experimental Eye Research, 2012, 102, 109-110.	2.6	11
54	Experimental Assessment of the Importance of Amino Acid Positions Identified by an Entropy-Based Correlation Analysis of Multiple-Sequence Alignments. Biochemistry, 2012, 51, 5633-5641.	2.5	12

#	Article	IF	CITATIONS
55	CLIPS-1D: analysis of multiple sequence alignments to deduce for residue-positions a role in catalysis, ligand-binding, or protein structure. BMC Bioinformatics, 2012, 13, 55.	2.6	16
56	Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes. BMC Genomics, 2012, 13, 144.	2.8	88
57	Prescont: Predicting proteinâ€protein interfaces utilizing four residue properties. Proteins: Structure, Function and Bioinformatics, 2012, 80, 154-168.	2.6	41
58	Dimerization Determines Substrate Specificity of a Bacterial Prenyltransferase. ChemBioChem, 2012, 13, 1297-1303.	2.6	6
59	Key2Ann: a tool to process sequence sets by replacing database identifiers with a human-readable annotation. Journal of Integrative Bioinformatics, 2011, 8, 35-46.	1.5	2
60	PROCOS: Computational analysis of protein–protein complexes. Journal of Computational Chemistry, 2011, 32, 2575-2586.	3.3	22
61	A Fast and Precise Approach for Computational Saturation Mutagenesis and its Experimental Validation by Using an Artificial (βα) ₈ â€Barrel Protein. ChemBioChem, 2011, 12, 1544-1550.	2.6	10
62	Key2Ann: a tool to process sequence sets by replacing database identifiers with a human-readable annotation. Journal of Integrative Bioinformatics, 2011, 8, .	1.5	2
63	Genes optimized by evolution for accurate and fast translation encode in Archaea and Bacteria a broad and characteristic spectrum of protein functions. BMC Genomics, 2010, 11, 617.	2.8	7
64	DNA sequence encoded repression of rRNA gene transcription in chromatin. Nucleic Acids Research, 2010, 38, 5304-5314.	14.5	20
65	Identification and characterization of two novel primate-specific histone H3 variants, H3.X and H3.Y. Journal of Cell Biology, 2010, 190, 777-791.	5.2	106
66	Computational and Experimental Evidence for the Evolution of a (βα)8-Barrel Protein from an Ancestral Quarter-Barrel Stabilised by Disulfide Bonds. Journal of Molecular Biology, 2010, 398, 763-773.	4.2	54
67	TransCent: Computational enzyme design by transferring active sites and considering constraints relevant for catalysis. BMC Bioinformatics, 2009, 10, 54.	2.6	8
68	GO4genome: A Prokaryotic Phylogeny Based on Genome Organization. Journal of Molecular Evolution, 2009, 68, 550-562.	1.8	4
69	Computational Design of Enzymes. Chemistry and Biology, 2008, 15, 421-423.	6.0	24
70	H2r: Identification of evolutionary important residues by means of an entropy based analysis of multiple sequence alignments. BMC Bioinformatics, 2008, 9, 151.	2.6	16
71	Modelling the evolution of the archeal tryptophan synthase. BMC Evolutionary Biology, 2007, 7, 59.	3.2	27
72	A Comparative Categorization of Protein Function Encoded in Bacterial or Archeal Genomic Islands. Journal of Molecular Evolution, 2006, 62, 1-14.	1.8	15

#	Article	IF	CITATIONS
73	Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC Bioinformatics, 2006, 7, 142.	2.6	349
74	AMIGOS: a method for the inspection of genomic organisation or structure and its application to characterise conserved gene arrangements. In Silico Biology, 2006, 6, 281-306.	0.9	1
75	A comparative categorization of gene flux in diverse microbial species. Genomics, 2005, 86, 462-475.	2.9	13
76	The genome sequence of the extreme thermophile Thermus thermophilus. Nature Biotechnology, 2004, 22, 547-553.	17.5	345
77	Oligo kernels for datamining on biological sequences: a case study on prokaryotic translation initiation sites. BMC Bioinformatics, 2004, 5, 169.	2.6	47
78	SIGI: score-based identification of genomic islands. BMC Bioinformatics, 2004, 5, 22.	2.6	76
79	Chorismate mutase of Thermus thermophilus is a monofunctional AroH class enzyme inhibited by tyrosine. Archives of Microbiology, 2004, 181, 195-203.	2.2	16
80	The Complete Genome Sequence of <i> Bacillus licheniformis </i> DSM13, an Organism with Great Industrial Potential. Journal of Molecular Microbiology and Biotechnology, 2004, 7, 204-211.	1.0	284
81	A Survey of Codon and Amino Acid Frequency Bias in Microbial Genomes Focusing on Translational Efficiency. Journal of Molecular Evolution, 2003, 57, 453-466.	1.8	29
82	The genome sequence of <i>Clostridium tetani</i> , the causative agent of tetanus disease. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1316-1321.	7.1	324
83	secureBLAST. In Silico Biology, 2003, 3, 405-9.	0.9	0
84	YACOP: Enhanced gene prediction obtained by a combination of existing methods. In Silico Biology, 2003, 3, 441-51.	0.9	81
85	Gene Islands Integrated into tRNA ^{Gly} Genes Confer Genome Diversity on a <i>Pseudomonas aeruginosa</i> Clone. Journal of Bacteriology, 2002, 184, 6665-6680.	2.2	164
86	The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. Journal of Molecular Microbiology and Biotechnology, 2002, 4, 453-61.	1.0	266
87	Efficient and flexible access to fully protected trinucleotides suitable for DNA synthesis by automated phosphoramidite chemistry. Chemical Communications, 1996, , 2677.	4.1	14
88	Statistical evidence for a biochemical pathway of natural, sequence- targeted G/C to C/G transversion mutagenesis in Haemophilus influenzae Rd. Nucleic Acids Research, 1996, 24, 4146-4151.	14.5	7
89	Substrate preferences of Vsr DNA mismatch endonuclease and their consequences for the evolution of the Escherichia coli K-12 genome. Journal of Molecular Biology, 1995, 245, 1-7.	4.2	50
90	Statistical evaluation and biological interpretation of non-random abundance in theE.coliK-12 genome of tetra-and pentanucleotide sequences related to VSP DNA mismatch repair. Nucleic Acids Research, 1992, 20, 1657-1662.	14.5	46

#	Article	IF	CITATIONS
91	Fast Quantitative Assay of Sequence-Specific Endonuclease Activity Based on DNA Sequencer Technology. Biological Chemistry Hoppe-Seyler, 1992, 373, 1223-1226.	1.4	17
92	Protein design on computers. Five new proteins: Shpilka, grendel, fingerclasp, leather, and aida. Proteins: Structure, Function and Bioinformatics, 1992, 12, 105-110.	2.6	26
93	Biased DNA repair. Nature, 1992, 355, 595-596.	27.8	39
94	Versatile controlling system for cryopreparation techniques in electron microscopy. Journal of Electron Microscopy Technique, 1991, 17, 450-455.	1.1	4
95	Quantitative analysis of cell motility and chemotaxis in Dictyostelium discoideum by using an image processing system and a novel chemotaxis chamber providing stationary chemical gradients Journal of Cell Biology, 1989, 108, 973-984.	5.2	189
96	Chapter 20 Cell Adhesion: Its Quantification, Assay of the Molecules Involved, and Selection of Defective Mutants in Dictyostelium and Polysphondylium. Methods in Cell Biology, 1987, 28, 359-385.	1.1	29
97	Post-translational glycosylation of the contact site A protein of <i>Dictyostelium discoideum</i> is important for stability but not for its function in cell adhesion. EMBO Journal, 1987, 6, 3663-3671.	7.8	49
98	Monoclonal antibodies against Dictyostelium plasma membranes: their binding to simple sugars. Cell Differentiation, 1985, 17, 83-94.	0.4	26
99	Nerve growth factor-mediated induction of choline acetyltransferase in PC12 cells: evaluation of the site of action of nerve growth factor and the involvement of lysosomal degradation products of nerve growth factor. Journal of Neuroscience, 1984, 4, 3039-3050.	3.6	56
100	Monoclonal anti-glycoprotein antibody that blocks cell adhesion in Polysphondylium pallidum. FEBS Journal, 1984, 140, 73-81.	0.2	24
101	Responses of amoebae to local stimulation by light. Cell Biology International Reports, 1983, 7, 611-616.	0.6	26
102	Stage-specific antigens reacting with monoclonal antibodies against contact site A, a cell-surface glycoprotein of Dictyostelium discoideum. Cell Differentiation, 1982, 11, 1-13.	0.4	72