Gary Lynch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4081291/publications.pdf

Version: 2024-02-01

		331670	454955
30	1,958	21	30
papers	citations	h-index	g-index
32	32	32	2464
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Different Rho GTPase–dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation. Journal of Cell Biology, 2009, 186, 85-97.	5.2	255
2	Role of N-methyl-D-aspartate receptors in the induction of synaptic potentiation by burst stimulation patterned after the hippocampal \hat{l}_s -rhythm. Brain Research, 1988, 441, 111-118.	2.2	237
3	Hippocampal Focal Knockout of CBP Affects Specific Histone Modifications, Long-Term Potentiation, and Long-Term Memory. Neuropsychopharmacology, 2011, 36, 1545-1556.	5.4	207
4	Development of glutamate binding sites and their regulation by calcium in rat hippocampus. Developmental Brain Research, 1981, 1, 37-48.	1.7	173
5	Reduced Cognition in Syngap1 Mutants Is Caused by Isolated Damage within Developing Forebrain Excitatory Neurons. Neuron, 2014, 82, 1317-1333.	8.1	118
6	Developmental changes in synaptic properties in hippocampus of neonatal rats. Developmental Brain Research, 1989, 49, 105-114.	1.7	112
7	Memory-Related Synaptic Plasticity Is Sexually Dimorphic in Rodent Hippocampus. Journal of Neuroscience, 2018, 38, 7935-7951.	3.6	86
8	Integrin Dynamics Produce a Delayed Stage of Long-Term Potentiation and Memory Consolidation. Journal of Neuroscience, 2012, 32, 12854-12861.	3.6	80
9	Evidence of Mitochondrial Dysfunction within the Complex Genetic Etiology of Schizophrenia. Molecular Neuropsychiatry, 2015, 1, 201-219.	2.9	74
10	A Primary Cortical Input to Hippocampus Expresses a Pathway-Specific and Endocannabinoid-Dependent Form of Long-Term Potentiation. ENeuro, 2016, 3, ENEURO.0160-16.2016.	1.9	65
11	Long-Term Memory Deficits are Associated with Elevated Synaptic ERK1/2 Activation and Reversed by mGluR5 Antagonism in an Animal Model of Autism. Neuropsychopharmacology, 2014, 39, 1664-1673.	5 . 4	61
12	Chronic Ampakine Treatments Stimulate Dendritic Growth and Promote Learning in Middle-Aged Rats. Journal of Neuroscience, 2016, 36, 1636-1646.	3.6	52
13	Atypical Endocannabinoid Signaling Initiates a New Form of Memory-Related Plasticity at a Cortical Input to Hippocampus. Cerebral Cortex, 2018, 28, 2253-2266.	2.9	50
14	Spaced training rescues memory and ERK1/2 signaling in fragile X syndrome model mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16907-16912.	7.1	49
15	Mechanisms of white matter change induced by meditation training. Frontiers in Psychology, 2014, 5, 1220.	2.1	45
16	Synaptic Abnormalities in the Infralimbic Cortex of a Model of Congenital Depression. Journal of Neuroscience, 2013, 33, 13441-13448.	3.6	35
17	Treating a novel plasticity defect rescues episodic memory in Fragile X model mice. Molecular Psychiatry, 2018, 23, 1798-1806.	7.9	32
18	Medial habenula cholinergic signaling regulates cocaineâ€associated relapseâ€like behavior. Addiction Biology, 2019, 24, 403-413.	2.6	29

#	Article	IF	CITATION
19	Estrogen's Effects on Excitatory Synaptic Transmission Entail Integrin and TrkB Transactivation and Depend Upon β1-integrin function. Neuropsychopharmacology, 2016, 41, 2723-2732.	5.4	26
20	Protein synthesis and consolidation of memory-related synaptic changes. Brain Research, 2015, 1621, 62-72.	2.2	25
21	Pronounced differences in signal processing and synaptic plasticity between piriformâ€hippocampal network stages: a prominent role for adenosine. Journal of Physiology, 2015, 593, 2889-2907.	2.9	24
22	Prepubescent female rodents have enhanced hippocampal LTP and learning relative to males, reversing in adulthood as inhibition increases. Nature Neuroscience, 2022, 25, 180-190.	14.8	24
23	Sex differences in synaptic plasticity underlying learning. Journal of Neuroscience Research, 2023, 101, 764-782.	2.9	22
24	Acquisition of temporal order requires an intact CA3 commissural/associational (C/A) feedback system in mice. Communications Biology, 2019, 2, 251.	4.4	16
25	A TrkB agonist and ampakine rescue synaptic plasticity and multiple forms of memory in a mouse model of intellectual disability. Neurobiology of Disease, 2020, 134, 104604.	4.4	16
26	Patch clamp-assisted single neuron lipidomics. Scientific Reports, 2017, 7, 5318.	3.3	13
27	Epigenetic regulation of immediate-early gene Nr4a2/Nurr1 in the medial habenula during reinstatement of cocaine-associated behavior Neuropharmacology, 2019, 153, 13-19.	4.1	13
28	Endogenous Syngap 1 alpha splice forms promote cognitive function and seizure protection. ELife, 2022, 11, .	6.0	10
29	Persistent sexually dimorphic effects of adolescent THC exposure on hippocampal synaptic plasticity and episodic memory in rodents. Neurobiology of Disease, 2022, 162, 105565.	4.4	7
30	Experiential learning in rodents: past experience enables rapid learning and localized encoding in hippocampus Learning and Memory 2017 24 569-579	1.3	2