Line J Gordon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4081091/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet, The, 2019, 393, 447-492.	6.3	5,421
2	Options for keeping the food system within environmental limits. Nature, 2018, 562, 519-525.	13.7	1,709
3	Understanding relationships among multiple ecosystem services. Ecology Letters, 2009, 12, 1394-1404.	3.0	1,707
4	The Anthropocene: From Global Change to Planetary Stewardship. Ambio, 2011, 40, 739-761.	2.8	1,175
5	Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio, 2017, 46, 4-17.	2.8	653
6	Distilling the role of ecosystem services in the Sustainable Development Goals. Ecosystem Services, 2018, 29, 70-82.	2.3	339
7	Managing water in agriculture for food production and other ecosystem services. Agricultural Water Management, 2010, 97, 512-519.	2.4	317
8	Agricultural modifications of hydrological flows create ecological surprises. Trends in Ecology and Evolution, 2008, 23, 211-219.	4.2	308
9	Human modification of global water vapor flows from the land surface. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7612-7617.	3.3	299
10	Our future in the Anthropocene biosphere. Ambio, 2021, 50, 834-869.	2.8	275
11	The unfolding water drama in the Anthropocene: towards a resilienceâ€based perspective on water for global sustainability. Ecohydrology, 2014, 7, 1249-1261.	1.1	197
12	Transnational corporations and the challenge of biosphere stewardship. Nature Ecology and Evolution, 2019, 3, 1396-1403.	3.4	194
13	Mapping ecosystem services across scales and continents – A review. Ecosystem Services, 2015, 13, 57-63.	2.3	163
14	Greening the global water system. Journal of Hydrology, 2010, 384, 177-186.	2.3	162
15	Analyzing precipitationsheds to understand the vulnerability of rainfall dependent regions. Biogeosciences, 2012, 9, 733-746.	1.3	135
16	Linkages Among Water Vapor Flows, Food Production, and Terrestrial Ecosystem Services. Ecology and Society, 1999, 3, .	0.9	124
17	Rewiring food systems to enhance human health and biosphere stewardship. Environmental Research Letters, 2017, 12, 100201.	2.2	112
18	Integrating resilience thinking and optimisation for conservation. Trends in Ecology and Evolution, 2009, 24, 549-554.	4.2	110

LINE J GORDON

#	Article	IF	CITATIONS
19	Global root zone storage capacity from satellite-based evaporation. Hydrology and Earth System Sciences, 2016, 20, 1459-1481.	1.9	107
20	A watershed approach to upgrade rainfed agriculture in water scarce regions through Water System Innovations: an integrated research initiative on water for food and rural livelihoods in balance with ecosystem functions. Physics and Chemistry of the Earth, 2004, 29, 1109-1118.	1.2	104
21	Contrasting roles of interception and transpiration in the hydrological cycle – Part 1: Temporal characteristics over land. Earth System Dynamics, 2014, 5, 441-469.	2.7	104
22	The Water Planetary Boundary: Interrogation and Revision. One Earth, 2020, 2, 223-234.	3.6	98
23	Revealing Invisible Water: Moisture Recycling as an Ecosystem Service. PLoS ONE, 2016, 11, e0151993.	1.1	97
24	Dealing with drought: The challenge of using water system technologies to break dryland poverty traps. Global Environmental Change, 2008, 18, 607-616.	3.6	93
25	Agricultural ecosystems and their services: the vanguard of sustainability?. Current Opinion in Environmental Sustainability, 2016, 23, 92-99.	3.1	88
26	Illuminating water cycle modifications and Earth system resilience in the Anthropocene. Water Resources Research, 2020, 56, e2019WR024957.	1.7	86
27	Variability of moisture recycling using a precipitationshed framework. Hydrology and Earth System Sciences, 2014, 18, 3937-3950.	1.9	79
28	Remote land use impacts on river flows through atmospheric teleconnections. Hydrology and Earth System Sciences, 2018, 22, 4311-4328.	1.9	79
29	The Great Green Wall for the Sahara and the Sahel Initiative as an opportunity to enhance resilience in Sahelian landscapes and livelihoods. Regional Environmental Change, 2019, 19, 1417-1428.	1.4	76
30	Making Investments in Dryland Development Work: Participatory Scenario Planning in the Makanya Catchment, Tanzania. Ecology and Society, 2008, 13, .	1.0	75
31	Ecosystem services from woody vegetation on agricultural lands in Sudano-Sahelian West Africa. Agriculture, Ecosystems and Environment, 2015, 200, 186-199.	2.5	74
32	Analysing resilience in dryland agro-ecosystems: a case study of the Makanya catchment in Tanzania over the past 50 years. Land Degradation and Development, 2007, 18, 680-696.	1.8	72
33	Integrating the Water Planetary Boundary With Water Management From Local to Global Scales. Earth's Future, 2020, 8, e2019EF001377.	2.4	65
34	Approaching moisture recycling governance. Global Environmental Change, 2017, 45, 15-23.	3.6	62
35	How spatial scale shapes the generation and management of multiple ecosystem services. Ecosphere, 2017, 8, e01741.	1.0	60
36	Land cover change and water vapour flows: learning from Australia. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1973-1984.	1.8	55

Line J Gordon

#	Article	IF	CITATIONS
37	Assessment of ecosystem services and benefits in village landscapes – A case study from Burkina Faso. Ecosystem Services, 2016, 21, 141-152.	2.3	53
38	Linking Freshwater Flows and Ecosystem Services Appropriated by People: The Case of the Baltic Sea Drainage Basin. Ecosystems, 1999, 2, 351-366.	1.6	51
39	Using Participatory Scenario Planning to Identify Ecosystem Services in Changing Landscapes. Ecology and Society, 2013, 18, .	1.0	50
40	WTO must ban harmful fisheries subsidies. Science, 2021, 374, 544-544.	6.0	45
41	Opportunities and limitations to detect climate-related regime shifts in inland Arctic ecosystems through eco-hydrological monitoring. Environmental Research Letters, 2011, 6, 014015.	2.2	41
42	†Less but better' meat is a sustainability message in need of clarity. Nature Food, 2020, 1, 520-522.	6.2	34
43	Patchwork Earth: navigating pathways to just, thriving, and sustainable futures. One Earth, 2021, 4, 172-176.	3.6	29
44	Megacity precipitationsheds reveal tele-connected water security challenges. PLoS ONE, 2018, 13, e0194311.	1.1	27
45	Invisible water security: Moisture recycling and water resilience. Water Security, 2019, 8, 100046.	1.2	26
46	Using local initiatives to envision sustainable and resilient food systems in the Stockholm city-region. Global Food Security, 2020, 24, 100334.	4.0	26
47	Mapping social-ecological systems archetypes. Environmental Research Letters, 2020, 15, 034017.	2.2	26
48	Investment in resilient food systems in the most vulnerable and fragile regions is critical. Nature Food, 2021, 2, 546-551.	6.2	26
49	Moving beyond organic – A food system approach to assessing sustainable and resilient farming. Global Food Security, 2021, 28, 100487.	4.0	22
50	Workshop 3 (synthesis): innovative processes in small scale agricultural production using water more effectively. Water Science and Technology, 2001, 43, 129-131.	1.2	20
51	The Covid-19 pandemic stress the need to build resilient production ecosystems. Agriculture and Human Values, 2020, 37, 645-646.	1.7	16
52	Mapping regional livelihood benefits from local ecosystem services assessments in rural Sahel. PLoS ONE, 2018, 13, e0192019.	1.1	14
53	Ecohydrological Landscape Management for Human Well-Being. Water International, 2000, 25, 178-184.	0.4	13
54	Is wetter better? Exploring agriculturally-relevant rainfall characteristics over four decades in the Sahel. Environmental Research Letters, 2021, 16, 035002.	2.2	12

Line J Gordon

#	Article	IF	CITATIONS
55	An invitation for more research on transnational corporations and the biosphere. Nature Ecology and Evolution, 2020, 4, 494-494.	3.4	9
56	Principle 3 –Manage slow variables and feedbacks. , 2015, , 105-141.		8
57	On the other side of the ditch: exploring contrasting ecosystem service coproduction between smallholder and commercial agriculture. Ecology and Society, 2018, 23, .	1.0	8
58	Biomimetics provides lessons from nature for contemporary ways to improve human health. Journal of Clinical and Translational Science, 2021, 5, e128.	0.3	4
59	Workshop 9 (synthesis): how to increase the status of water issues in governance and in public perception. Water Science and Technology, 2002, 45, 229-231.	1.2	1
60	Vegetation improvement and soil biological quality in the Sahel of Burkina Faso. International Journal of Biological and Chemical Sciences, 2016, 10, 1048.	0.1	1
61	Introduction to the book. , 2014, , xvii-xx.		0
62	The role played by water in the biosphere. , 0, , 2-44.		0
63	Human modification of the Earth System. , 0, , 46-67.		0
64	Balancing on a threshold of alternate development paths: regime shift, traps and transformations. , 0, , 68-93.		0
65	Crucial functioning of and human dependence on the global water system. , 0, , 94-140.		0
66	Food production: a mega water challenge. , 0, , 142-171.		0
67	Closing the yield gap in the savannah zone. , 0, , 172-193.		0
68	Water resources and functions for agro-ecological systems at the landscape scale. , 0, , 194-224.		0
69	Pathways to the future. , 0, , 250-276.		0
70	Governance for navigating the novel freshwater dynamics of the Anthropocene. , 0, , 226-249.		0
71	Collaborative Approaches to Biosphere Stewardship. , 2019, , 41-50.		0
72	The Role of Green Water in Sustaining Ecological Functions – A Global Assessment. Gaia, 2002, 11, 267-272.	0.3	0

#	Article	IF	CITATIONS
73	Workshop 9 (synthesis): how to increase the status of water issues in governance and in public perception. Water Science and Technology, 2002, 45, 229-31.	1.2	0