Caiqiao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4080867/publications.pdf

Version: 2024-02-01

304743 395702 1,457 69 22 33 h-index citations g-index papers 71 71 71 1289 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Transplantion of predominant $\langle i \rangle$ Lactobacilli $\langle i \rangle$ from native hens to commercial hens could indirectly regulate their ISC activity by improving intestinal microbiota. Microbial Biotechnology, 2022, 15, 1235-1252.	4.2	9
2	Leukemia inhibitory factor prevents chicken follicular atresia through PI3K/AKT and Stat3 signaling pathways. Molecular and Cellular Endocrinology, 2022, 543, 111550.	3.2	7
3	Protective Effect of Grape Seed Proanthocyanidins on Oxidative Damage of Chicken Follicular Granulosa Cells by Inhibiting FoxO1-Mediated Autophagy. Frontiers in Cell and Developmental Biology, 2022, 10, 762228.	3.7	9
4	Naringin prevents follicular atresia by inhibiting oxidative stress in the aging chicken. Poultry Science, 2022, 101, 101891.	3.4	11
5	Protective Effect of Follicle-Stimulating Hormone on DNA Damage of Chicken Follicular Granulosa Cells by Inhibiting CHK2/p53. Cells, 2022, 11, 1291.	4.1	5
6	Autophagy participates in germline cyst breakdown and follicular formation by modulating glycolysis switch via Akt signaling in newly-hatched chicken ovaries. Developmental Biology, 2022, 487, 122-133.	2.0	2
7	Paneth cells mediated the response of intestinal stem cells at the early stage of intestinal inflammation in the chicken. Poultry Science, 2021, 100, 615-622.	3.4	7
8	TGFâ€Î·1â€induced collagen promotes chicken ovarian follicle development via an intercellular cooperative pattern. Cell Biology International, 2021, 45, 1336-1348.	3.0	10
9	LIF and bFGF enhanced chicken primordial follicle activation by Wnt/ \hat{l}^2 -catenin pathway. Theriogenology, 2021, 176, 1-11.	2.1	7
10	Lactobacillus salivarius and Lactobacillus agilis feeding regulates intestinal stem cells activity by modulating crypt niche in hens. Applied Microbiology and Biotechnology, 2021, 105, 8823-8835.	3.6	13
11	Effect of dietary N-carbamylglutamate on development of ovarian follicles via enhanced angiogenesis in the chicken. Poultry Science, 2020, 99, 578-589.	3.4	18
12	TGF $\hat{\mathbf{e}}\hat{\mathbf{f}}^21$ sustains germ cell cyst reservoir via restraining follicle formation in the chicken. Cell Biology International, 2020, 44, 861-872.	3.0	4
13	Enhancing effect of FSH on follicular development through yolk formation and deposition in the low-yield laying chickens. Theriogenology, 2020, 157, 418-430.	2.1	9
14	Aptamer-modified sensitive nanobiosensors for the specific detection of antibiotics. Journal of Materials Chemistry B, 2020, 8, 8607-8613.	5.8	42
15	Metformin Prevents Follicular Atresia in Aging Laying Chickens through Activation of PI3K/AKT and Calcium Signaling Pathways. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-23.	4.0	17
16	Improvement of eggshell quality by dietary N-carbamylglutamate supplementation in laying chickens. Poultry Science, 2020, 99, 4085-4095.	3.4	12
17	The Attenuating Effect of the Intraovarian Bone Morphogenetic Protein 4 on Age-Related Endoplasmic Reticulum Stress in Chicken Follicular Cells. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-17.	4.0	18
18	Transcriptome profiling analysis of underlying regulation of growing follicle development in the chicken. Poultry Science, 2020, 99, 2861-2872.	3.4	25

#	Article	IF	CITATIONS
19	Basic fibroblast growth factor promotes prehierarchical follicle growth and yolk deposition in the chicken. Theriogenology, 2019, 139, 90-97.	2.1	27
20	Interaction of Follicle-Stimulating Hormone and Stem Cell Factor to Promote Primordial Follicle Assembly in the Chicken. Frontiers in Endocrinology, 2019, 10, 91.	3.5	17
21	Reciprocal stimulating effects of bFGF and FSH on chicken primordial follicle activation through AKT and ERK pathway. Theriogenology, 2019, 132, 27-35.	2.1	18
22	Isolation and culture of chicken growing follicles in 2- and 3-dimensional models. Theriogenology, 2018, 111, 43-51.	2.1	10
23	Melatonin Improves Laying Performance by Enhancing Intestinal Amino Acids Transport in Hens. Frontiers in Endocrinology, 2018, 9, 426.	3.5	8
24	Grape Seed Proanthocyanidin Extract Prevents Ovarian Aging by Inhibiting Oxidative Stress in the Hens. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-16.	4.0	71
25	Taurine regulates mucosal barrier function to alleviate lipopolysaccharide-induced duodenal inflammation in chicken. Amino Acids, 2018, 50, 1637-1646.	2.7	20
26	Promotion of the prehierarchical follicle growth by postovulatory follicles involving PGE ₂ –EP2 signaling in chickens. Journal of Cellular Physiology, 2018, 233, 8984-8995.	4.1	10
27	Coherent apoptotic and autophagic activities involved in regression of chicken postovulatory follicles. Aging, 2018, 10, 819-832.	3.1	16
28	Lycopene ameliorates oxidative stress in the aging chicken ovary via activation of Nrf2/HO-1 pathway. Aging, 2018, 10, 2016-2036.	3.1	87
29	Effect of estrogen on chick primordial follicle development and activation. Cell Biology International, 2017, 41, 630-638.	3.0	45
30	Ameliorative Effect of Grape Seed Proanthocyanidin Extract on Cadmiumâ€Induced Meiosis Inhibition During Oogenesis in Chicken Embryos. Anatomical Record, 2016, 299, 450-460.	1.4	13
31	Involvement of Notch signaling in early chick ovarian follicle development. Cell Biology International, 2016, 40, 65-73.	3.0	10
32	A biomimetic collagen/heparin multi-layered porous hydroxyapatite orbital implant for in vivo vascularization studies on the chicken chorioallantoic membrane. Graefe's Archive for Clinical and Experimental Ophthalmology, 2016, 254, 83-89.	1.9	11
33	Isolation and culture of chicken primordial follicles. Poultry Science, 2015, 94, 2576-2580.	3.4	2
34	Progesterone regulates chicken embryonic germ cell meiotic initiation independent of retinoic acid signaling. Theriogenology, 2014, 82, 195-203.	2.1	10
35	Estrogen stimulates expression of chicken hepatic vitellogenin II and very low-density apolipoprotein II through ER-α. Theriogenology, 2014, 82, 517-524.	2.1	50
36	Supplementation With Quercetin Attenuates 4â€Nitrophenolâ€Induced Testicular Toxicity in Adult Male Mice. Anatomical Record, 2013, 296, 1650-1657.	1.4	17

#	Article	IF	CITATIONS
37	RALDH2, the enzyme for retinoic acid synthesis, mediates meiosis initiation in germ cells of the female embryonic chickens. Amino Acids, 2013, 44, 405-412.	2.7	35
38	Gonadotropins regulate ovarian germ cell mitosis/meiosis decision in the embryonic chicken. Molecular and Cellular Endocrinology, 2013, 370, 32-41.	3.2	25
39	Prostaglandin E2 and insulin-like growth factor I interact to enhance proliferation of theca externa cells from chicken prehierarchical follicles. Prostaglandins and Other Lipid Mediators, 2013, 106, 91-98.	1.9	6
40	Ameliorative effect of grape seed proanthocyanidin extract on thioacetamide-induced mouse hepatic fibrosis. Toxicology Letters, 2012, 213, 353-360.	0.8	35
41	G Protein-Coupled Receptor 30 Mediates Estrogen-Induced Proliferation of Primordial Germ Cells Via EGFR/Akt/β-Catenin Signaling Pathway. Endocrinology, 2012, 153, 3504-3516.	2.8	59
42	Retinoic acid promotes proliferation of chicken primordial germ cells via activation of PI3K/Aktâ€mediated NFâ€PB signalling cascade. Cell Biology International, 2012, 36, 705-712.	3.0	16
43	Basic fibroblast growth factor suppresses meiosis and promotes mitosis of ovarian germ cells in embryonic chickens. General and Comparative Endocrinology, 2012, 176, 173-181.	1.8	17
44	Quercetin attenuates cadmium-induced oxidative damage and apoptosis in granulosa cells from chicken ovarian follicles. Reproductive Toxicology, 2011, 31, 477-485.	2.9	78
45	The promoting effect of retinoic acid on proliferation of chicken primordial germ cells by increased expression of cadherin and catenins. Amino Acids, 2011, 40, 933-941.	2.7	25
46	Protective Effect of Quercetin on Cadmiumâ€Induced Oxidative Toxicity on Germ Cells in Male Mice. Anatomical Record, 2011, 294, 520-526.	1.4	93
47	Effect of prostaglandin on luteinizing hormone-stimulated proliferation of theca externa cells from chicken prehierarchical follicles. Prostaglandins and Other Lipid Mediators, 2010, 92, 77-84.	1.9	18
48	Protective Effect of Quercetin on the Reproductive Toxicity of 4-nitrophenol in Diesel Exhaust Particles on Male Embryonic Chickens. Journal of Reproduction and Development, 2010, 56, 195-199.	1.4	22
49	Ginsenosides promote proliferation of granulosa cells from chicken prehierarchical follicles through PKC activation and upâ€regulated cyclin gene expression. Cell Biology International, 2010, 34, 769-775.	3.0	16
50	Induced Multilineage Differentiation of Chicken Embryonic Germ Cells via Embryoid Body Formation. Stem Cells and Development, 2010, 19, 195-202.	2.1	13
51	Epidermal Growth Factor-Induced Proliferation of Chicken Primordial Germ Cells: Involvement of Calcium/Protein Kinase C and NFKB11. Biology of Reproduction, 2009, 80, 528-536.	2.7	26
52	Quercetin protects embryonic chicken spermatogonial cells from oxidative damage intoxicated with 3-methyl-4-nitrophenol in primary culture. Toxicology Letters, 2009, 190, 61-65.	0.8	24
53	Quercetin Protects Spermatogonial Cells from 2,4-D-Induced Oxidative Damage in Embryonic Chickens. Journal of Reproduction and Development, 2007, 53, 749-754.	1.4	28
54	Activation of protein kinases A and C promoted proliferation of chicken primordial germ cells. Animal Reproduction Science, 2007, 101, 295-303.	1.5	10

#	Article	IF	CITATIONS
55	Pro-proliferating effect of homologous somatic cells on chicken primordial germ cells. Cell Biology International, 2007, 31, 1016-1021.	3.0	6
56	Interactive actions of prostaglandin and epidermal growth factor to enhance proliferation of granulosa cells from chicken prehierarchical follicles. Prostaglandins and Other Lipid Mediators, 2007, 83, 285-294.	1.9	6
57	Sex-specific effects of androgen and estrogen on proliferation of the embryonic chicken hypothalamic neurons. Endocrine, 2007, 31, 161-166.	2.3	7
58	Ginsenosides promote proliferation of chicken primordial germ cells via PKC-involved activation of NF-κB. Cell Biology International, 2007, 31, 1251-1256.	3.0	11
59	Estrogenic and antioxidant effects of a phytoestrogen daidzein on ovarian germ cells in embryonic chickens. Domestic Animal Endocrinology, 2006, 31, 258-268.	1.6	38
60	Ginsenosides promote meiotic maturation of mouse oocytes in cumulus-oocyte complexes involving increased expression of nitric oxide synthase. Nutrition Research, 2006, 26, 585-590.	2.9	5
61	Proliferating effects of the flavonoids daidzein and quercetin on cultured chicken primordial germ cells through antioxidant action. Cell Biology International, 2006, 30, 445-451.	3.0	26
62	Prostaglandin involvement in follicle-stimulating hormone-induced proliferation of granulosa cells from chicken prehierarchical follicles. Prostaglandins and Other Lipid Mediators, 2006, 81, 45-54.	1.9	22
63	Ginsenosides Promote Proliferation of Cultured Ovarian Germ Cells Involving Protein Kinase C-mediated System in Embryonic Chickens. Asian-Australasian Journal of Animal Sciences, 2006, 19, 958-963.	2.4	9
64	Stimulating effects of androgen on proliferation of cultured ovarian germ cells through androgenic and estrogenic actions in embryonic chickens. Domestic Animal Endocrinology, 2005, 28, 451-462.	1.6	11
65	Protective effects of antioxidant vitamins on Aroclor 1254-induced toxicity in cultured chicken embryo hepatocytes. Toxicology in Vitro, 2005, 19, 665-673.	2.4	24
66	Toxic and hormonal effects of polychlorinated biphenyls on cultured testicular germ cells of embryonic chickens. Toxicology Letters, 2005, 155, 297-305.	0.8	16
67	Estrogenic and toxic effects of polychlorinated biphenyls on cultured ovarian germ cells of embryonic chickens. Reproductive Toxicology, 2004, 19, 79-86.	2.9	18
68	Effects of follicle-stimulating hormone and androgen on proliferation of cultured testicular germ cells of embryonic chickens. General and Comparative Endocrinology, 2004, 138, 237-246.	1.8	29
69	Effects of follicle-stimulating hormone and $17\hat{l}^2$ -estradiol on proliferation of chicken embryonic ovarian germ cells in culture. Comparative Biochemistry and Physiology Part A, Molecular & Samp; Integrative Physiology, 2004, 139, 521-526.	1.8	16