Raoul M Bongers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4080274/publications.pdf

Version: 2024-02-01

94 papers

2,031 citations

236925 25 h-index 302126 39 g-index

97 all docs

97 docs citations

97 times ranked 1457 citing authors

#	Article	IF	Citations
1	The neglected puzzle of dementia in people with severe/profound intellectual disabilities: A systematic literature review of observable symptoms. Journal of Applied Research in Intellectual Disabilities, 2022, 35, 24-45.	2.0	14
2	On the psychological origins of tool use. Neuroscience and Biobehavioral Reviews, 2022, 134, 104521.	6.1	11
3	Exploring the Relationship Between EMG Feature Space Characteristics and Control Performance in Machine Learning Myoelectric Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 21-30.	4.9	13
4	User training for machine learning controlled upper limb prostheses: a serious game approach. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 32.	4.6	25
5	Transfer of mode switching performance: from training to upper-limb prosthesis use. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 85.	4.6	8
6	Dementia in people with severe or profound intellectual (and multiple) disabilities: Focus group research into relevance, symptoms and training needs. Journal of Applied Research in Intellectual Disabilities, 2021, 34, 1602-1617.	2.0	10
7	Action and perception manifolds have gradients that may play a role in learning. Physics of Life Reviews, 2021, 37, 5-6.	2.8	1
8	Convergence in myoelectric control: Between individual patterns of myoelectric learning. Biomedical Signal Processing and Control, 2021, 70, 103057.	5.7	0
9	Looking beyond proportional control: The relevance of mode switching in learning to operate multi-articulating myoelectric upper-limb prostheses. Biomedical Signal Processing and Control, 2020, 55, 101647.	5.7	9
10	Serious gaming to generate separated and consistent EMG patterns in pattern-recognition prosthesis control. Biomedical Signal Processing and Control, 2020, 62, 102140.	5.7	19
11	Should Hands Be Restricted When Measuring Able-Bodied Participants to Evaluate Machine Learning Controlled Prosthetic Hands?. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 1977-1983.	4.9	9
12	Adjustments in end-effector trajectory and underlying joint angle synergies after a target switch: Order of adjustment is flexible. PLoS ONE, 2020, 15, e0238561.	2.5	3
13	TIPS for Scaling up Research in Upper Limb Prosthetics. Prosthesis, 2020, 2, 340-351.	2.9	4
14	Performance among different types of myocontrolled tasks is not related. Human Movement Science, 2020, 70, 102592.	1.4	9
15	Task constraints act at the level of synergies and at the level of end-effector kinematics in manual reaching and manual lateral interception Journal of Experimental Psychology: Human Perception and Performance, 2020, 46, 1511-1526.	0.9	2
16	The Effect of Feedback During Training Sessions on Learning Pattern-Recognition-Based Prosthesis Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 2087-2096.	4.9	27
17	Users' and therapists' perceptions of myoelectric multi-function upper limb prostheses with conventional and pattern recognition control. PLoS ONE, 2019, 14, e0220899.	2.5	48
18	Fixed muscle synergies and their potential to improve the intuitive control of myoelectric assistive technology for upper extremities. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 6.	4.6	21

#	Article	IF	CITATIONS
19	Synergies reciprocally relate end-effector and joint-angles in rhythmic pointing movements. Scientific Reports, 2019, 9, 17378.	3.3	6
20	Flexibility in joint coordination remains unaffected by force and balance demands in young and old adults during simple sit-to-stand tasks. European Journal of Applied Physiology, 2019, 119, 419-428.	2.5	7
21	Comparing Different Methods to Create a Linear Model for Uncontrolled Manifold Analysis. Motor Control, 2019, 23, 189-204.	0.6	2
22	Development and reliability of the rating of compensatory movements in upper limb prosthesis wearers during work-related tasks. Journal of Hand Therapy, 2019, 32, 368-374.	1.5	4
23	Functional Capacity Evaluation in Upper Limb Reduction Deficiency and Amputation: Development and Pilot Testing. Journal of Occupational Rehabilitation, 2018, 28, 158-169.	2.2	9
24	Musculoskeletal complaints in individuals with finger or partial hand amputations in the Netherlands: a cross-sectional study. Disability and Rehabilitation, 2018, 40, 1146-1153.	1.8	16
25	Influence of mirror therapy and motor imagery on intermanual transfer effects in upper-limb prosthesis training of healthy participants: A randomized pre-posttest study. PLoS ONE, 2018, 13, e0204839.	2.5	6
26	The development of consistency and flexibility in manual pointing during middle childhood. Developmental Psychobiology, 2018, 60, 511-519.	1.6	2
27	Variability in coordination patterns in children with developmental coordination disorder (DCD). Human Movement Science, 2018, 60, 202-213.	1.4	25
28	Repeatability and Safety of the Functional Capacity Evaluation-One-Handed for Individuals with Upper Limb Reduction Deficiency and Amputation. Journal of Occupational Rehabilitation, 2018, 28, 475-485.	2.2	2
29	Development of reaching during mid-childhood from a Developmental Systems perspective. PLoS ONE, 2018, 13, e0193463.	2.5	14
30	The Southampton Hand Assessment Procedure revisited: A transparent linear scoring system, applied to data of experienced prosthetic users. Journal of Hand Therapy, 2017, 30, 49-57.	1.5	25
31	Old adults preserve motor flexibility during rapid reaching. European Journal of Applied Physiology, 2017, 117, 955-967.	2.5	11
32	Extending Energy Optimization in Goal-Directed Aiming from Movement Kinematics to Joint Angles. Journal of Motor Behavior, 2017, 49, 129-140.	0.9	9
33	Reductive and Emergent Views on Motor Learning in Rehabilitation Practice. Journal of Motor Behavior, 2017, 49, 244-254.	0.9	12
34	What the Dynamic Systems Approach Can Offer for Understanding Development: An Example of Mid-childhood Reaching. Frontiers in Psychology, 2017, 8, 1774.	2.1	6
35	Does practicing a wide range of joint angle configurations lead to higher flexibility in a manual obstacle-avoidance target-pointing task?. PLoS ONE, 2017, 12, e0181041.	2.5	9
36	Influence of the type of training task on intermanual transfer effects in upper-limb prosthesis training: A randomized pre-posttest study. PLoS ONE, 2017, 12, e0188362.	2.5	8

3

#	Article	IF	CITATIONS
37	Learning an EMG Controlled Game: Task-Specific Adaptations and Transfer. PLoS ONE, 2016, 11, e0160817.	2.5	42
38	Joint-Angle Coordination Patterns Ensure Stabilization of a Body-Plus-Tool System in Point-to-Point Movements with a Rod. Frontiers in Psychology, 2016, 7, 826.	2.1	17
39	The Anatomy of Action Systems: Task Differentiation When Learning an EMG Controlled Game. Frontiers in Psychology, 2016, 7, 1945.	2.1	7
40	Musculoskeletal Complaints in Transverse Upper Limb Reduction Deficiency and Amputation in The Netherlands: Prevalence, Predictors, and Effect on Health. Archives of Physical Medicine and Rehabilitation, 2016, 97, 1137-1145.	0.9	56
41	Learning to use a body-powered prosthesis: changes in functionality and kinematics. Journal of NeuroEngineering and Rehabilitation, 2016, 13, 90.	4.6	39
42	Intermanual Transfer Effects in Below-Elbow Myoelectric Prosthesis Users. Archives of Physical Medicine and Rehabilitation, 2016, 97, 1924-1930.	0.9	13
43	Upper Limb Absence: Predictors of Work Participation and Work Productivity. Archives of Physical Medicine and Rehabilitation, 2016, 97, 892-899.	0.9	23
44	Task-Oriented Gaming for Transfer to Prosthesis Use. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24, 1384-1394.	4.9	46
45	Virtual Training of the Myosignal. PLoS ONE, 2015, 10, e0137161.	2.5	29
46	Influence of Inter-Training Intervals on Intermanual Transfer Effects in Upper-Limb Prosthesis Training: A Randomized Pre-Posttest Study. PLoS ONE, 2015, 10, e0128747.	2.5	8
47	Intermanual Transfer Effect in Young Children After Training in a Complex Skill: Mechanistic, Pseudorandomized, Pretest-Posttest Study. Physical Therapy, 2015, 95, 730-739.	2.4	8
48	Information without content: A Gibsonian reply to enactivists' worries. Cognition, 2015, 134, 210-214.	2.2	47
49	Upper-Limb Prosthetic Myocontrol: Two Recommendations. Frontiers in Neuroscience, 2015, 9, 496.	2.8	24
50	Physical Demand but Not Dexterity Is Associated with Motor Flexibility during Rapid Reaching in Healthy Young Adults. PLoS ONE, 2015, 10, e0127017.	2.5	13
51	Movements of Individual Digits in Bimanual Prehension Are Coupled into a Grasping Component. PLoS ONE, 2014, 9, e97790.	2.5	15
52	Learning effects of repetitive administration of the Southampton Hand Assessment Procedure in novice prosthetic users. Journal of Rehabilitation Medicine, 2014, 46, 788-797.	1.1	26
53	The Emergence of an Action System: The Organization of Gaze in Creating Novel Tools. Ecological Psychology, 2014, 26, 177-197.	1.1	6
54	Preliminary study of the Southampton Hand Assessment Procedure for Children and its reliability. BMC Musculoskeletal Disorders, 2014, 15, 199.	1.9	10

#	Article	IF	CITATIONS
55	The effect of the height to which the hand is lifted on horizontal curvature in horizontal point-to-point movements. Experimental Brain Research, 2014, 232, 3211-3219.	1.5	1
56	Changes in performance over time while learning to use a myoelectric prosthesis. Journal of NeuroEngineering and Rehabilitation, 2014, 11, 16.	4.6	61
57	The Trade-Off between Spatial and Temporal Variabilities in Reciprocal Upper-Limb Aiming Movements of Different Durations. PLoS ONE, 2014, 9, e97447.	2.5	5
58	Effect of Feedback during Virtual Training of Grip Force Control with a Myoelectric Prosthesis. PLoS ONE, 2014, 9, e98301.	2.5	37
59	Individual Differences in Learning a Novel Discrete Motor Task. PLoS ONE, 2014, 9, e112806.	2.5	18
60	Sensibility of the Stump in Adults With an Acquired Major Upper Extremity Amputation. Archives of Physical Medicine and Rehabilitation, 2013, 94, 2179-2185.	0.9	6
61	Functionality of i-LIMB and i-LIMB Pulse hands: Case report. Journal of Rehabilitation Research and Development, 2013, 50, 1123-1128.	1.6	40
62	Intermanual Transfer in Training With an Upper-Limb Myoelectric Prosthesis Simulator: A Mechanistic, Randomized, Pretest-Posttest Study. Physical Therapy, 2013, 93, 22-31.	2.4	30
63	Not All Is Lost: Old Adults Retain Flexibility in Motor Behaviour during Sit-to-Stand. PLoS ONE, 2013, 8, e77760.	2.5	26
64	Knowledge and skill: a case for ontological equality. Frontiers in Human Neuroscience, 2013, 7, 916.	2.0	0
65	Efficiency of voluntary opening hand and hook prosthetic devices: 24 years of development?. Journal of Rehabilitation Research and Development, 2012, 49, 523.	1.6	50
66	Determining skill level in myoelectric prosthesis use with multiple outcome measures. Journal of Rehabilitation Research and Development, 2012, 49, 1331.	1.6	84
67	Bernstein's Levels of Construction of Movements Applied to Upper Limb Prosthetics. Journal of Prosthetics and Orthotics, 2012, 24, 67-76.	0.4	26
68	Base on balls for the Chapman strategy: Reassessing Brouwer, Brenner, and Smeets (2002). Attention, Perception, and Psychophysics, 2012, 74, 1488-1498.	1.3	9
69	A common first-order time-to-contact based control of hand-closure initiation in catching and grasping. Human Movement Science, 2012, 31, 529-540.	1.4	3
70	Hand aperture patterns in prehension. Human Movement Science, 2012, 31, 487-501.	1.4	28
71	Learning to Control Orientation and Force in a Hammering Task. Zeitschrift Fur Psychologie / Journal of Psychology, 2012, 220, 29-36.	1.0	10
72	Joint angle variability and co-variation in a reaching with a rod task. Experimental Brain Research, 2011, 208, 411-422.	1.5	41

#	Article	IF	CITATIONS
73	Getting hold of approaching objects: In search of a common control of hand-closure initiation in catching and grasping. Human Movement Science, 2010, 29, 518-528.	1.4	2
74	The i-LIMB Hand and the DMC Plus Hand Compared. Prosthetics and Orthotics International, 2010, 34, 216-220.	1.0	64
75	The horizontal curvature of point-to-point movements does not depend on simply the planning space. Neuroscience Letters, 2010, 469, 189-193.	2.1	5
76	Movement characteristics of upper extremity prostheses during basic goal-directed tasks. Clinical Biomechanics, 2010, 25, 523-529.	1.2	51
77	Learning to Control Opening and Closing a Myoelectric Hand. Archives of Physical Medicine and Rehabilitation, 2010, 91, 1442-1446.	0.9	61
78	Do Changes in Movements after Tool Use Depend on Body Schema or Motor Learning?. Lecture Notes in Computer Science, 2010, , 271-276.	1.3	4
79	Effects of Changing Object Size During Prehension. Journal of Motor Behavior, 2009, 41, 427-435.	0.9	27
80	Systematic review of the effectiveness of mirror therapy in upper extremity function. Disability and Rehabilitation, 2009, 31, 2135-2149.	1.8	145
81	Linear and logarithmic speed–accuracy trade-offs in reciprocal aiming result from task-specific parameterization of an invariant underlying dynamics Journal of Experimental Psychology: Human Perception and Performance, 2009, 35, 1443-1457.	0.9	17
82	The Role of Order of Practice in Learning to Handle an Upper-Limb Prosthesis. Archives of Physical Medicine and Rehabilitation, 2008, 89, 1759-1764.	0.9	40
83	The role of eye and head movements in detecting information about fly balls Journal of Experimental Psychology: Human Perception and Performance, 2008, 34, 1515-1523.	0.9	14
84	Lateral interception II: Predicting hand movements Journal of Experimental Psychology: Human Perception and Performance, 2006, 32, 459-472.	0.9	21
85	Variations of Tool and Task Characteristics Reveal That Tool-Use Postures Are Anticipated. Journal of Motor Behavior, 2004, 36, 305-315.	0.9	36
86	Geometric, But Not Kinetic, Properties of Tools Affect the Affordances Perceived by Toddlers. Ecological Psychology, 2004, 16, 129-158.	1.1	12
87	Geometries and Dynamics of a Rod Determine How It Is Used for Reaching. Journal of Motor Behavior, 2003, 35, 4-22.	0.9	29
88	Variables of the Touch Technique that Influence the Safety of Cane Walkers. Journal of Visual Impairment and Blindness, 2002, 96, 516-531.	0.7	16
89	A non-representational approach to imagined action. Cognitive Science, 2002, 26, 345-375.	1.7	43
90	A non-representational approach to imagined action. Cognitive Science, 2002, 26, 345-375.	1.7	9

#	Article	IF	CITATIONS
91	Information, Perception, and Action: A Reply to Commentators. Ecological Psychology, 2001, 13, 227-244.	1.1	44
92	Improving obstacle detection by redesign of walking canes for blind persons. Ergonomics, 2001, 44, 513-526.	2.1	25
93	A vector-integration-to-endpoint model for performance of viapoint movements. Neural Networks, 1999, 12, 1-29.	5.9	35
94	The dependence of discrete movements on rhythmic movements: Simple RT during oscillatory tracking. Human Movement Science, 1994, 13, 473-493.	1.4	19