Peter N Njoki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/40801/publications.pdf Version: 2024-02-01

DETED N NIOKI

#	Article	IF	CITATIONS
1	Size Correlation of Optical and Spectroscopic Properties for Gold Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 14664-14669.	1.5	533
2	Fabrication of Magnetic Core@Shell Fe Oxide@Au Nanoparticles for Interfacial Bioactivity and Bio-separation. Langmuir, 2007, 23, 9050-9056.	1.6	321
3	Characterization of Carbon-Supported AuPt Nanoparticles for Electrocatalytic Methanol Oxidation Reaction. Langmuir, 2006, 22, 2892-2898.	1.6	266
4	Phase Properties of Carbon-Supported Goldâ	3.2	239
5	Core/Shell Nanoparticles as Electrocatalysts for Fuel Cell Reactions. Advanced Materials, 2008, 20, 4342-4347.	11.1	231
6	Synergistic activity of gold-platinum alloy nanoparticle catalysts. Catalysis Today, 2007, 122, 378-385.	2.2	221
7	Nanoscale Alloying, Phase-Segregation, and Coreâ^'Shell Evolution of Goldâ^'Platinum Nanoparticles and Their Electrocatalytic Effect on Oxygen Reduction Reaction. Chemistry of Materials, 2010, 22, 4282-4294.	3.2	205
8	Activity-composition correlation of AuPt alloy nanoparticle catalysts in electrocatalytic reduction of oxygen. Electrochemistry Communications, 2006, 8, 581-587.	2.3	188
9	Nanostructured catalysts in fuel cells. Nanotechnology, 2010, 21, 062001.	1.3	173
10	Nanoengineered PtCo and PtNi Catalysts for Oxygen Reduction Reaction: An Assessment of the Structural and Electrocatalytic Properties. Journal of Physical Chemistry C, 2011, 115, 1682-1694.	1.5	173
11	Interparticle Interactions in Glutathione Mediated Assembly of Gold Nanoparticles. Langmuir, 2008, 24, 8857-8863.	1.6	146
12	Fuel cell technology: nano-engineered multimetallic catalysts. Energy and Environmental Science, 2008, 1, 454.	15.6	144
13	Homocysteine-Mediated Reactivity and Assembly of Gold Nanoparticles. Langmuir, 2007, 23, 826-833.	1.6	137
14	Electrocatalytic oxidation of methanol: carbon-supported gold–platinum nanoparticle catalysts prepared by two-phase protocol. Catalysis Today, 2005, 99, 291-297.	2.2	135
15	Ternary alloy nanoparticles with controllable sizes and composition and electrocatalytic activity. Journal of Materials Chemistry, 2006, 16, 1665.	6.7	95
16	Thermal Treatment of PtNiCo Electrocatalysts: Effects of Nanoscale Strain and Structure on the Activity and Stability for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2010, 114, 17580-17590.	1.5	95
17	Interparticle Chiral Recognition of Enantiomers: A Nanoparticle-Based Regulation Strategy. Analytical Chemistry, 2009, 81, 689-698.	3.2	82
18	Enhanced Oxygen Reduction Activity of Platinum Monolayer on Gold Nanoparticles. Journal of Physical Chemistry Letters, 2011, 2, 67-72.	2.1	80

Peter N Njoki

#	Article	IF	CITATIONS
19	Gold and magnetic oxide/gold core/shell nanoparticles as bio-functional nanoprobes. Nanotechnology, 2008, 19, 305102.	1.3	77
20	Nanocrystal and surface alloy properties of bimetallic Gold-Platinum nanoparticles. Nanoscale Research Letters, 2007, 2, 12-16.	3.1	76
21	Electrocatalytic reduction of oxygen: Gold and gold-platinum nanoparticle catalysts prepared by two-phase protocol. Gold Bulletin, 2004, 37, 217-223.	3.2	73
22	Aggregative Growth in the Size-Controlled Growth of Monodispersed Gold Nanoparticles. Langmuir, 2010, 26, 13622-13629.	1.6	67
23	Platinum-Catalyzed Synthesis of Water-Soluble Goldâ^'Platinum Nanoparticles. Langmuir, 2005, 21, 1623-1628.	1.6	54
24	Nanostructured PtVFe catalysts: Electrocatalytic performance in proton exchange membrane fuel cells. Electrochemistry Communications, 2009, 11, 1139-1141.	2.3	40
25	Assembly of Gold Nanoparticles Mediated by Multifunctional Fullerenes. Langmuir, 2007, 23, 10715-10724.	1.6	30
26	Processing Core/Alloy/Shell Nanoparticles: Tunable Optical Properties and Evidence for Self-Limiting Alloy Growth. Journal of Physical Chemistry C, 2011, 115, 9933-9942.	1.5	28
27	Formation of Gold Nanoparticles Catalyzed by Platinum Nanoparticles:Â Assessment of the Catalytic Mechanism. Journal of Physical Chemistry B, 2006, 110, 22503-22509.	1.2	26
28	Nano-engineered PtVFe catalysts in proton exchange membrane fuel cells: Electrocatalytic performance. Electrochimica Acta, 2010, 55, 8230-8236.	2.6	26
29	Layer-by-Layer Processing and Optical Properties of Core/Alloy Nanostructures. Journal of the American Chemical Society, 2011, 133, 5224-5227.	6.6	24
30	The Surface Composition of Au/Ag Core/Alloy Nanoparticles Influences the Methanol Oxidation Reaction. ACS Applied Nano Materials, 2018, 1, 5640-5645.	2.4	21
31	Microwave-Assisted synthesis of Anisotropic copper–silver nanoparticles. Materials Chemistry and Physics, 2020, 241, 122348.	2.0	14
32	Remote Teaching of General Chemistry for Nonscience Majors during COVID-19. Journal of Chemical Education, 2020, 97, 3158-3162.	1.1	14
33	Growth Characteristics and Optical Properties of Core/Alloy Nanoparticles Fabricated via the Layer-by-Layer Hydrothermal Route. Chemistry of Materials, 2013, 25, 3105-3113.	3.2	13
34	Attenuating surface plasmon resonance via core/alloy architectures. Chemical Communications, 2011, 47, 10079.	2.2	12
35	Gold-Based Nanoparticle Catalysts for Fuel Cell Reactions. , 2007, , 289-307.		9
36	Exploiting core–shell and core–alloy interfaces for asymmetric growth of nanoparticles. Chemical Communications, 2012, 48, 10449.	2.2	9

Peter N Njoki

#	Article	IF	CITATIONS
37	Size Determination of Nanoparticles Based on Tapping-Mode Atomic Force Microscopy Measurements. Journal of Scanning Probe Microscopy, 2008, 3, 1-8.	0.0	7
38	Transformation of Silver Nanoparticles in Phosphate Anions: An Experiment for High School Students. Journal of Chemical Education, 2019, 96, 546-552.	1.1	6
39	Cultivating Success through Undergraduate Research Experience in a Historically Black College and University. Journal of Chemical Education, 2022, 99, 307-316.	1.1	6
40	Combinatorial Assessment of the Activity-Composition Correlation for Several Alloy Nanoparticle Catalysts. Industrial & Engineering Chemistry Research, 2008, 47, 4675-4682.	1.8	5
41	Synthesis of Bimetallic AuPt Nanoparticles in Aqueous Solution and Electrocatalytic Activity. Materials Research Society Symposia Proceedings, 2005, 900, 1.	0.1	1
42	A Thermogravimetric Study of Alakanethiolate Monolayer-Capped Gold Nanoparticle Catalysts. Materials Research Society Symposia Proceedings, 2003, 789, 45.	0.1	0
43	Carbon-Supported alloy Nanoparticle electroCatalysts. ECS Meeting Abstracts, 2005, , .	0.0	0
44	The Primarily Undergraduate Nanomaterials Cooperative: A New Model for Supporting Collaborative Research at Small Institutions on a National Scale. ACS Nanoscience Au, 2021, 1, 6-14.	2.0	0