Mauro Ricotta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4079872/publications.pdf Version: 2024-02-01

Μλυρο Ρισόττα

#	Article	IF	CITATIONS
1	Crack tip position evaluation and Paris' law assessment of a propagating crack by means of temperature-based approaches. Procedia Structural Integrity, 2022, 39, 528-545.	0.8	3
2	On the correlation of temperature harmonic content with energy dissipation in C45 steel samples under fatigue loading. Mechanics of Materials, 2022, 168, 104271.	3.2	10
3	Estimating the intrinsic dissipation using the second harmonic of the temperature signal in tensionâ€compression fatigue: Part I. Theory. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 2168-2185.	3.4	10
4	Estimating the intrinsic dissipation using the second harmonic of the temperature signal in tensionâ€compression fatigue. Part II: Experiments. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 2153-2167.	3.4	6
5	Static mechanical properties of virgin and recycled short glass fiberâ€reinforced polypropylene produced by pellet additive manufacturing. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 2554-2569.	3.4	13
6	Understanding the effect of notches in orthotropic solids subjected to static loads. Theoretical and Applied Fracture Mechanics, 2021, 116, 103110.	4.7	4
7	Critical distances approach reformulated for a better comparison of fatigue strength of materials with sharp notches. Material Design and Processing Communications, 2020, 2, e131.	0.9	Ο
8	Fatigue Strength Evaluation of Notched Ductile Steel Specimens Using Critical Distances. Procedia Structural Integrity, 2020, 28, 1329-1339.	0.8	0
9	Comparison of Experimental Thermal Methods for the Fatigue Limit Evaluation of a Stainless Steel. Metals, 2019, 9, 677.	2.3	36
10	Effect of material orthotropy on the notch stress intensity factors of sharp V-notched plates under tension. Theoretical and Applied Fracture Mechanics, 2019, 104, 102375.	4.7	9
11	Investigation of the crack tip stress field in a stainless steel SENT specimen by means of Thermoelastic Stress Analysis. Procedia Structural Integrity, 2019, 18, 330-346.	0.8	9
12	Analysis and Comparison of Some LEFM Parameters. Procedia Structural Integrity, 2019, 18, 413-421.	0.8	2
13	Infrared thermography-based evaluation of the elastic-plastic J-integral to correlate fatigue crack growth data of a stainless steel. International Journal of Fatigue, 2019, 125, 149-160.	5.7	26
14	Uniform scatter bands to analyse the fatigue strength of welded joints. Procedia Structural Integrity, 2019, 24, 66-79.	0.8	1
15	Analysis of dissipated energy and temperature fields at severe notches of AISI 304L stainless steel specimens. Frattura Ed Integrita Strutturale, 2019, 13, 334-347.	0.9	14
16	On relation between J-integral and heat energy dissipation at the crack tip in stainless steel specimens. Frattura Ed Integrita Strutturale, 2019, 13, 82-96.	0.9	2
17	The Dissipated Heat Energy as a Fatigue Damage Index For Experimental Fatigue Life Estimations. Procedia Engineering, 2018, 213, 313-322.	1.2	2
18	Strain energy-and stress-based approaches revisited in notch fatigue of ductile steels. MATEC Web of Conferences, 2018, 165, 14009.	0.2	3

MAURO RICOTTA

#	Article	IF	CITATIONS
19	Evaluating the specific heat loss in severely notched stainless steel specimens for fatigue strength analyses. Procedia Structural Integrity, 2018, 9, 151-158.	0.8	1
20	Correlation among Energy Based Fatigue Curves and Fatigue Design Approaches. Procedia Structural Integrity, 2018, 13, 1961-1966.	0.8	2
21	The Peak Stress Method Applied to Bi-Material Corners. Procedia Structural Integrity, 2018, 13, 1560-1565.	0.8	1
22	The heat energy dissipated in the material structural volume to correlate the fatigue crack growth rate in stainless steel specimens. International Journal of Fatigue, 2018, 115, 107-119.	5.7	21
23	An analysis of the specific heat loss at the tip of severely notched stainless steel specimens to correlate the fatigue strength. Theoretical and Applied Fracture Mechanics, 2017, 92, 240-251.	4.7	22
24	Fatigue and Notch Mechanics. Lecture Notes in Mechanical Engineering, 2017, , 9-23.	0.4	0
25	The heat energy dissipated in a control volume to correlate the crack propagation rate in stainless steel specimens. Frattura Ed Integrita Strutturale, 2017, 11, 299-306.	0.9	1
26	Evaluating the heat energy dissipated in a small volume surrounding the tip of a fatigue crack. International Journal of Fatigue, 2016, 92, 605-615.	5.7	42
27	The Heat Energy Dissipated in a Control Volume to Correlate the Fatigue Strength of Bluntly and Severely Notched Stainless Steel Specimens. Procedia Structural Integrity, 2016, 2, 2076-2083.	0.8	12
28	Fully Reversed Axial Notch Fatigue Behaviour of Virgin and Recycled Polypropylene Compounds. Procedia Structural Integrity, 2016, 2, 2255-2262.	0.8	3
29	A two-parameter, heat energy-based approach to analyse the mean stress influence on axial fatigue behaviour of plain steel specimens. International Journal of Fatigue, 2016, 82, 60-70.	5.7	28
30	Experimental estimation of the heat energy dissipated in a volume surrounding the tip of a fatigue crack. Frattura Ed Integrita Strutturale, 2016, 10, 172-181.	0.9	0
31	Notch Sensitivity on fully Reversed Axial Fatigue Behaviour of Different Polypropylene Compounds. Procedia Engineering, 2015, 109, 441-449.	1.2	2
32	Experimental evaluation of fatigue damage in two-stage loading tests based on the energy dissipation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2015, 229, 1280-1291.	2.1	21
33	Simple expressions to estimate the Manson–Coffin curves of ductile cast irons. International Journal of Fatigue, 2015, 78, 38-45.	5.7	24
34	The specific heat loss combined with the thermoelastic effect for an experimental analysis of the mean stress influence on axial fatigue of stainless steel plain specimens. Frattura Ed Integrita Strutturale, 2014, 8, 191-200.	0.9	0
35	An hysteresis energy-based synthesis of fully reversed axial fatigue behaviour of different polypropylene composites. Composites Part B: Engineering, 2014, 65, 17-25.	12.0	42
36	Unified material parameters based on full compatibility for low-cycle fatigue characterisation of as-cast and austempered ductile irons. International Journal of Fatigue, 2014, 68, 111-122.	5.7	14

MAURO RICOTTA

#	Article	IF	CITATIONS
37	Crack propagation analysis in composite bonded joints under mixed-mode (I+II) static and fatigue loading: a damage-based model. Journal of Adhesion Science and Technology, 2013, 27, 1393-1406.	2.6	15
38	Mechanical characterization of polyamide cellular structures fabricated using selective laser sintering technologies. Materials & Design, 2013, 46, 910-915.	5.1	37
39	Crack propagation analysis in composite bonded joints under mixed-mode (I+II) static and fatigue loading: experimental investigation and phenomenological modelling. Journal of Adhesion Science and Technology, 2013, 27, 1179-1196.	2.6	22
40	Energy absorption in composite laminates under impact loading. Composites Part B: Engineering, 2013, 44, 133-140.	12.0	84
41	A synthesis of the pushâ€pull fatigue behaviour of plain and notched stainless steel specimens by using the specific heat loss. Fatigue and Fracture of Engineering Materials and Structures, 2013, 36, 1306-1322.	3.4	75
42	Comparison of the lowâ€cycle and mediumâ€cycle fatigue behaviour of ferritic, pearlitic, isothermed and austempered ductile irons. Fatigue and Fracture of Engineering Materials and Structures, 2013, 36, 913-929.	3.4	17
43	The use of the specific heat loss to analyse the low- and high-cycle fatigue behaviour of plain and notched specimens made of a stainless steel. Engineering Fracture Mechanics, 2012, 81, 2-16.	4.3	70
44	Damage mechanisms in composite bonded joints under fatigue loading. Composites Part B: Engineering, 2012, 43, 210-220.	12.0	21
45	Influence of the interface ply orientation on the fatigue behaviour of bonded joints in composite materials. International Journal of Fatigue, 2010, 32, 82-93.	5.7	32
46	Life prediction for bonded joints in composite material based on actual fatigue damage. , 2010, , 316-349.		0
47	Analysis of the fatigue strength under two load levels of a stainless steel based on energy dissipation. EPJ Web of Conferences, 2010, 6, 38009.	0.3	10
48	Fatigue design of complex welded structures. International Journal of Fatigue, 2009, 31, 59-69.	5.7	36
49	Mode I Strain Energy Release Rate in composite laminates in the presence of voids. Composites Science and Technology, 2008, 68, 2616-2623.	7.8	49
50	Fatigue behaviour and damage evolution of single lap bonded joints in composite material. Composites Science and Technology, 2006, 66, 176-187.	7.8	123
51	Stress intensity factors and strain energy release rates in single lap bonded joints in composite materials. Composites Science and Technology, 2006, 66, 647-656.	7.8	77
52	Life prediction of bonded joints in composite materials. International Journal of Fatigue, 2006, 28, 1166-1176.	5.7	76
53	Fatigue Behaviour of a Stainless Steel Based on Energy Measurements. Key Engineering Materials, 0, 417-418, 333-336.	0.4	2
54	A Three Dimensional Graphical Aid for Fatigue Data Analysis. Key Engineering Materials, 0, 488-489, 755-758.	0.4	2

#	Article	IF	CITATIONS
55	A Synthesis of the Fatigue Behavior of Stainless Steel Bars under Fully Reversed Axial or Torsion Loading by Using the Specific Heat Loss. Key Engineering Materials, 0, 577-578, 453-456.	0.4	11