Nuala Mooney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4079292/publications.pdf

Version: 2024-02-01

46 papers

1,989 citations

331670 21 h-index 254184 43 g-index

46 all docs 46 docs citations

46 times ranked

2647 citing authors

#	Article	IF	CITATIONS
1	Urinary metabolites give new clues to kidney transplant tolerance. EBioMedicine, 2022, 77, 103935.	6.1	O
2	Endothelial Cells Activated by Extracellular Histones Promote Foxp3+ Suppressive Treg Cells In Vitro. International Journal of Molecular Sciences, 2022, 23, 4527.	4.1	2
3	Tumor Lysis Syndrome and AKI: Beyond Crystal Mechanisms. Journal of the American Society of Nephrology: JASN, 2022, 33, 1154-1171.	6.1	18
4	An activated endothelium after organ transplantation: the pathogenesis of rejection., 2021,, 69-76.		0
5	T cell antigenicity and immunogenicity of allogeneic exosomes. American Journal of Transplantation, 2021, 21, 2583-2589.	4.7	24
6	Endothelial cell, myeloid, and adaptive immune responses in SARSâ€CoVâ€2 infection. FASEB Journal, 2021, 35, e21577.	0.5	13
7	Inflammation Determines the Capacity of Allogenic Endothelial Cells to Regulate Human Treg Expansion. Frontiers in Immunology, 2021, 12, 666531.	4.8	14
8	Hematopoietic progenitors polarize in contact with bone marrow stromal cells in response to SDF1. Journal of Cell Biology, 2021, 220, .	5.2	8
9	Cytokines in Liver Transplantation. Cytokine, 2021, 148, 155705.	3.2	8
10	Immunomodulation of endothelial cells induced by macrolide therapy in a model of septic stimulation. Immunity, Inflammation and Disease, 2021, 9, 1656-1669.	2.7	2
11	Neutrophils cause a "NET―increase in skin allograft allogenicity. American Journal of Transplantation, 2020, 20, 922-923.	4.7	O
12	Potential Novel Biomarkers in Chronic Graft-Versus-Host Disease. Frontiers in Immunology, 2020, 11, 602547.	4.8	17
13	Sirtuin 1: A Dilemma in Transplantation. Journal of Transplantation, 2020, 2020, 1-11.	0.5	5
14	HLA-DQ alloantibodies directly activate the endothelium and compromise differentiation of FoxP3high regulatory T lymphocytes. Kidney International, 2019, 96, 689-698.	5.2	38
15	The Role of the Endothelium during Antibody-Mediated Rejection: From Victim to Accomplice. Frontiers in Immunology, 2018, 9, 106.	4.8	37
16	Endothelial Cell Amplification of Regulatory T Cells Is Differentially Modified by Immunosuppressors and Intravenous Immunoglobulin. Frontiers in Immunology, 2017, 8, 1761.	4.8	16
17	HLA Class II Antibody Activation of Endothelial Cells Promotes Th17 and Disrupts Regulatory T Lymphocyte Expansion. American Journal of Transplantation, 2016, 16, 1408-1420.	4.7	72
18	Donor Specific Antibodies are not only directed against HLA-DR: Minding your Ps and Qs. Human Immunology, 2016, 77, 1092-1100.	2.4	23

#	Article	lF	CITATIONS
19	Markers of Endothelial-to-Mesenchymal Transition. Journal of the American Society of Nephrology: JASN, 2016, 27, 324-332.	6.1	33
20	Complement-Binding Anti-HLA Antibodies and Kidney-Allograft Survival. New England Journal of Medicine, 2013, 369, 1215-1226.	27.0	746
21	Study of the Allogeneic Response Induced by Endothelial Cells Expressing HLA Class II After Lentiviral Transduction. Methods in Molecular Biology, 2013, 960, 461-472.	0.9	7
22	Regulation of the CD4+ T cell allo-immune response by endothelial cells. Human Immunology, 2012, 73, 1269-1274.	2.4	20
23	HLAâ€G inhibition of NKâ€cell cytolytic function is uncoupled from tumor cell lipid raft reorganization. European Journal of Immunology, 2012, 42, 700-709.	2.9	16
24	Immunological function of the endothelial cell within the setting of organ transplantation. Immunology Letters, 2011, 139, 1-6.	2.5	36
25	Human endothelial cells generate Th17 and regulatory T cells under inflammatory conditions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2891-2896.	7.1	107
26	Chemotherapeutic Agents Targeting the Tubulin Cytoskeleton Modify LPS-induced Cytokine Secretion by Dendritic Cells and Increase Antigen Presentation. Journal of Immunotherapy, 2010, 33, 364-370.	2.4	11
27	Regulation of MHC II and CD1 antigen presentation: from ubiquity to security. Journal of Leukocyte Biology, 2009, 85, 215-224.	3.3	32
28	Contrasting cytoskeletal regulation of MHC class II peptide presentation by human B cells or dendritic cells. European Journal of Immunology, 2008, 38, 1096-1105.	2.9	9
29	Regulation of CD1a Surface Expression and Antigen Presentation by Invariant Chain and Lipid Rafts. Journal of Immunology, 2008, 180, 980-987.	0.8	29
30	Dendritic Cells Differentiated in the Presence of a Single-Stranded Viral RNA Sequence Conserve Their Ability To Activate CD4 T Lymphocytes but Lose Their Capacity for Th1 Polarization. Vaccine Journal, 2008, 15, 954-962.	3.1	5
31	TLR7/8 agonists impair monocyte-derived dendritic cell differentiation and maturation. Journal of Leukocyte Biology, 2007, 81, 221-228.	3.3	29
32	Extracorporeal photophoresis increases sensitivity of monocytes from patients with graft-versus-host disease to HLA-DR–mediated cell death. Transfusion, 2007, 48, 071005074756006-???.	1.6	11
33	MHC class II/CD38/CD9: a lipid-raft–dependent signaling complex in human monocytes. Blood, 2005, 106, 3074-3081.	1.4	86
34	MHC class II signaling function is regulated during maturation of plasmacytoid dendritic cells. Journal of Leukocyte Biology, 2005, 77, 560-567.	3.3	23
35	Cognate MHC-TCR interaction leads to apoptosis of antigen-presenting cells. Journal of Leukocyte Biology, 2004, 75, 1036-1044.	3.3	15
36	B Cell Lipid Rafts Regulate Both Peptide-Dependent and Peptide-Independent APC-T Cell Interaction. Journal of Immunology, 2004, 173, 1876-1886.	0.8	30

3

#	Article	IF	CITATION
37	MHC class II signaling in antigen-presenting cells. Current Opinion in Immunology, 2004, 16, 108-113.	5.5	134
38	Signaling through HLA-DR induces PKC \hat{I}^2 -dependent B cell death outside rafts. European Journal of Immunology, 2003, 33, 928-938.	2.9	22
39	Composition of MHC class II-enriched lipid microdomains is modified during maturation of primary dendritic cells. Journal of Leukocyte Biology, 2003, 74, 40-48.	3.3	33
40	MHC Class II-Peptide Complexes in Dendritic Cell Lipid Microdomains Initiate the CD4 Th1 Phenotype. Journal of Immunology, 2003, 171, 5812-5819.	0.8	31
41	Intracytoplasmic domains of MHC class II molecules are essential for lipid-raft-dependent signaling. Journal of Cell Science, 2003, 116, 2565-2575.	2.0	37
42	MHC class II-mediated apoptosis of mature dendritic cells proceeds by activation of the protein kinase C-delta isoenzyme. International Immunology, 2002, 14, 935-942.	4.0	48
43	HLA-DR-Mediated Apoptosis Susceptibility Discriminates Differentiation Stages of Dendritic/Monocytic APC. Journal of Immunology, 2000, 164, 2379-2385.	0.8	58
44	Role of the CD1a molecule in the superantigen-induced activation of MHC class II negative human thymocytes. Human Immunology, 2000, 61, 427-437.	2.4	7
45	HLA Class Il–Mediated Death Is Induced Via Fas/Fas Ligand Interactions in Human Splenic B Lymphocytes. Blood, 1997, 89, 1996-2007.	1.4	67
46	Signal transduction in B lymphocytes. Human Immunology, 1991, 30, 202-207.	2.4	10