Andrea Walther

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4079188/publications.pdf

Version: 2024-02-01

516215 395343 2,251 72 16 citations h-index papers

g-index 76 76 76 1534 docs citations times ranked citing authors all docs

33

#	Article	IF	Citations
1	Pulse shaping for on-demand emission of single Raman photons from a quantum-dot biexciton. Physical Review B, 2022, 105, .	1.1	3
2	Algorithms Based on Abs-Linearization for Non-smooth Optimization with PDE Constraints. International Series of Numerical Mathematics, 2022, , 377-395.	1.0	0
3	An introduction to algorithmic differentiation. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2020, 10, e1334.	4.6	9
4	Polyhedral DC Decomposition and DCA Optimization of Piecewise Linear Functions. Algorithms, 2020, 13, 166.	1.2	2
5	Nonsmooth optimization by successive abs-linearization in function spaces. Applicable Analysis, 2020, , $1\text{-}16$.	0.6	4
6	Beyond the Oracle: Opportunities of Piecewise Differentiation. , 2020, , 331-361.		0
7	Relaxing Kink Qualifications and Proving Convergence Rates in Piecewise Smooth Optimization. SIAM Journal on Optimization, 2019, 29, 262-289.	1.2	10
8	Characterizing and Testing Subdifferential Regularity in Piecewise Smooth Optimization. SIAM Journal on Optimization, 2019, 29, 1473-1501.	1.2	5
9	Finite convergence of an active signature method to local minima of piecewise linear functions. Optimization Methods and Software, 2019, 34, 1035-1055.	1.6	6
10	An inverse approach to the characterisation of material parameters of piezoelectric discs with triple-ring-electrodes. TM Technisches Messen, 2019, 86, 59-65.	0.3	0
11	An algorithm for nonsmooth optimization by successive piecewise linearization. Mathematical Programming, 2019, 177, 343-370.	1.6	9
12	Algorithmic differentiation of the Open CASCADE Technology CAD kernel and its coupling with an adjoint CFD solver. Optimization Methods and Software, 2018, 33, 813-828.	1.6	19
13	Efficient Numerical Solution of Geometric Inverse Problems Involving Maxwell's Equations Using Shape Derivatives and Automatic Code Generation. SIAM Journal of Scientific Computing, 2018, 40, 8405-8428.	1.3	1
14	Algorithmic differentiation for piecewise smooth functions: aÂcase study for robust optimization. Optimization Methods and Software, 2018, 33, 1073-1088.	1.6	8
15	New Results for the Handling of Additional Equality Constraints in One-Shot Optimization. Vietnam Journal of Mathematics, 2018, 46, 825-836.	0.4	1
16	Optimization of triple-ring electrodes on piezoceramic transducers using algorithmic differentiation. Optimization Methods and Software, 2018, 33, 868-888.	1.6	4
17	Material parameter determination of a piezoelectric disc with triple-ring-electrodes for increased sensitivity. Proceedings of Meetings on Acoustics, 2017, , .	0.3	1
18	On an extension of one-shot methods to incorporate additional constraints. Optimization Methods and Software, 2016, 31, 494-510.	1.6	6

#	Article	IF	CITATIONS
19	First- and second-order optimality conditions for piecewise smooth objective functions. Optimization Methods and Software, 2016, 31, 904-930.	1.6	23
20	On an inexact trust-region SQP-filter method for constrained nonlinear optimization. Computational Optimization and Applications, 2016, 63, 613-638.	0.9	6
21	On Lipschitz optimization based on gray-box piecewise linearization. Mathematical Programming, 2016, 158, 383-415.	1.6	16
22	OPTIMISATION OF A U-BEND USING A CAD-BASED ADJOINT METHOD WITH DIFFERENTIATED CAD KERNEL. , 2016, , .		4
23	Pressure Swing Adsorption Optimization Strategies for CO2 Capture. Computer Aided Chemical Engineering, 2015, 36, 197-223.	0.3	5
24	Simulative Ultraschall-Untersuchung von Pitch-Catch-Messanordnungen fýr große zylindrische Stahl-Prüflinge und gradientenbasierte Bildgebung. TM Technisches Messen, 2015, 82, 440-450.	0.3	0
25	SCADOPT: An Open-Source HPC Framework for Solving PDE Constrained Optimization Problems Using AD. , 2014, , .		0
26	Reliable computation of roots in analytical waveguide modeling using an interval-newton approach and algorithmic differentiation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 2597-2606.	1.7	2
27	Tailoring the high-harmonic emission in two-level systems and semiconductors by pulse shaping. Journal of the Optical Society of America B: Optical Physics, 2012, 29, A36.	0.9	1
28	An Exploratory Line Search for Piecewise Differentiable Objective Functions based on Algorithmic Differentiation. Proceedings in Applied Mathematics and Mechanics, 2012, 12, 631-632.	0.2	1
29	Computing roots for the modelling of waves in acoustic waveguides. Proceedings in Applied Mathematics and Mechanics, 2012, 12, 763-764.	0.2	2
30	Efficient aerodynamic shape optimization by structure exploitation. Optimization and Engineering, 2012, 13, 563.	1.3	0
31	A first-order convergence analysis of trust-region methods with inexact Jacobians and inequality constraints. Optimization Methods and Software, 2012, 27, 373-389.	1.6	4
32	Engineering high harmonic generation in semiconductors via pulse shaping. , 2012, , .		0
33	On the numerical stability of algorithmic differentiation. Computing (Vienna/New York), 2012, 94, 125-149.	3.2	14
34	On the Efficient Computation of Sparsity Patterns for Hessians. Lecture Notes in Computational Science and Engineering, 2012, , 139-149.	0.1	2
35	Combinatorial Problems in Algorithmic Differentiation. Chapman & Hall/CRC Computational Science, 2012, , 129-161.	0.5	1
36	Getting Started with ADOL-C. Chapman & Hall/CRC Computational Science, 2012, , 181-202.	0.5	85

3

#	Article	IF	Citations
37	Structure Exploiting Adjoints for Finite Element Discretizations. International Series of Numerical Mathematics, 2012, , 183-196.	1.0	О
38	Calculus-based optimization of the electron dynamics in nanostructures. Photonics and Nanostructures - Fundamentals and Applications, 2011, 9, 328-336.	1.0	1
39	Numerical experiments with an inexact Jacobian trust-region algorithm. Computational Optimization and Applications, 2011, 48, 255-271.	0.9	4
40	Algorithmic Differentiation for Calculus-based Optimization. , 2010, , .		0
41	On the local convergence of adjoint Broyden methods. Mathematical Programming, 2010, 121, 221-247.	1.6	16
42	On the efficient computation of high-order derivatives for implicitly defined functions. Computer Physics Communications, 2010, 181, 756-764.	3.0	29
43	Computation of derivatives for structure preserving optimal control using automatic differentiation. Proceedings in Applied Mathematics and Mechanics, 2010, 10, 585-586.	0.2	2
44	An adjoint-based SQP algorithm with quasi-Newton Jacobian updates for inequality constrained optimization. Optimization Methods and Software, 2010, 25, 531-552.	1.6	27
45	An Inexact Trust-Region Algorithm for the Optimization of Periodic Adsorption Processes. Industrial & Lamp; Engineering Chemistry Research, 2010, 49, 12004-12013.	1.8	17
46	New Algorithms for Optimal Online Checkpointing. SIAM Journal of Scientific Computing, 2010, 32, 836-854.	1.3	29
47	Three-dimensional reconstruction of a comet nucleus by optimal control of Maxwell's equations: A contribution to the experiment CONSERT onboard space craft Rosetta. , 2010 , , .		9
48	Efficient Computation of Sparse Hessians Using Coloring and Automatic Differentiation. INFORMS Journal on Computing, 2009, 21, 209-223.	1.0	49
49	Global convergence of quasi-Newton methods based on adjoint Broyden updates. Applied Numerical Mathematics, 2009, 59, 1120-1136.	1.2	19
50	MultiStage Approaches for Optimal Offline Checkpointing. SIAM Journal of Scientific Computing, 2009, 31, 1946-1967.	1.3	28
51	Optimal <i>r</i> -order of an adjoint Broyden method without the assumption of linearly independent steps. Optimization Methods and Software, 2008, 23, 215-225.	1.6	5
52	Computing sparse Hessians with automatic differentiation. ACM Transactions on Mathematical Software, 2008, 34, 1-15.	1.6	19
53	A First-Order Convergence Analysis of Trust-Region Methods with Inexact Jacobians. SIAM Journal on Optimization, 2008, 19, 307-325.	1.2	6
54	Parallel Reverse Mode Automatic Differentiation for OpenMP Programs with ADOL-C. Lecture Notes in Computational Science and Engineering, 2008, , 163-173.	0.1	14

#	Article	IF	CITATIONS
55	Exploiting Sparsity in Jacobian Computation via Coloring and Automatic Differentiation: A Case Study in a Simulated Moving Bed Process. Lecture Notes in Computational Science and Engineering, 2008, , 327-338.	0.1	7
56	Structure-Exploiting Automatic Differentiation of Finite Element Discretizations. Lecture Notes in Computational Science and Engineering, 2008, , 339-349.	0.1	1
57	Adjoints for Time-Dependent Optimal Control. Lecture Notes in Computational Science and Engineering, 2008, , 175-185.	0.1	2
58	Maintaining factorized KKT systems subject to rank-one updates of Hessians and Jacobians. Optimization Methods and Software, 2007, 22, 279-295.	1.6	15
59	Adjoint concepts for the optimal control of Burgers equation. Computational Optimization and Applications, 2007, 36, 109-133.	0.9	15
60	Automatic differentiation of explicit Runge-Kutta methods for optimal control. Computational Optimization and Applications, 2007, 36, 83-108.	0.9	49
61	Automatic Differentiation of an Entire Design Chain for Aerodynamic Shape Optimization. , 2007, , 454-461.		20
62	Efficient calculation of sensitivities for optimization problems. Discussiones Mathematicae: Differential Inclusions, Control and Optimization, 2007, 27, 119.	0.2	1
63	An optimal memory-reduced procedure for calculating adjoints of the instationary Navier-Stokes equations. Optimal Control Applications and Methods, 2006, 27, 19-40.	1.3	25
64	On the Efficient Generation of Taylor Expansions for DAE Solutions by Automatic Differentiation. Lecture Notes in Computer Science, 2006, , 1089-1098.	1.0	5
65	Evaluating Gradients in Optimal Control: Continuous Adjoints Versus Automatic Differentiation. Journal of Optimization Theory and Applications, 2004, 122, 63-86.	0.8	31
66	Program reversals for evolutions with non-uniform step costs. Acta Informatica, 2004, 40, 235-263.	0.5	1
67	Advantages of Binomial Checkpointing for Memory-reduced Adjoint Calculations. , 2004, , 834-843.		19
68	Parametric sensitivities for optimal control problems using automatic differentiation. Optimal Control Applications and Methods, 2003, 24, 297-314.	1.3	15
69	On constrained optimization by adjoint based quasi-Newton methods. Optimization Methods and Software, 2002, 17, 869-889.	1.6	65
70	Evaluating higher derivative tensors by forward propagation of univariate Taylor series. Mathematics of Computation, 2000, 69, 1117-1131.	1.1	55
71	Algorithm 799: revolve. ACM Transactions on Mathematical Software, 2000, 26, 19-45.	1.6	342
72	Multiple vector–Jacobian products are cheap. Applied Numerical Mathematics, 1999, 30, 367-377.	1.2	3