Emmanuelle Passegue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4079110/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Meeting Report: Aging Research and Drug Discovery. Aging, 2022, 14, 530-543.	1.4	4
2	Sepsis promotes splenic production of a protective platelet pool with high CD40 ligand expression. Journal of Clinical Investigation, 2022, 132, .	3.9	28
3	Aged hematopoietic stem cells are refractory to bloodborne systemic rejuvenation interventions. Journal of Experimental Medicine, 2021, 218, .	4.2	48
4	Inflammatory signaling regulates hematopoietic stem and progenitor cell development and homeostasis. Journal of Experimental Medicine, 2021, 218, .	4.2	41
5	Adult stem cells and regenerative medicine—a symposium report. Annals of the New York Academy of Sciences, 2020, 1462, 27-36.	1.8	43
6	The aged hematopoietic system promotes hippocampalâ€dependent cognitive decline. Aging Cell, 2020, 19, e13192.	3.0	15
7	Deregulated Notch and Wnt signaling activates early-stage myeloid regeneration pathways in leukemia. Journal of Experimental Medicine, 2020, 217, .	4.2	22
8	JEM women in STEM: Unique journeys with a common purpose. Journal of Experimental Medicine, 2020, 217, .	4.2	1
9	Dysregulated haematopoietic stem cell behaviour in myeloid leukaemogenesis. Nature Reviews Cancer, 2020, 20, 365-382.	12.8	87
10	Normal Hematopoiesis Is a Balancing Act of Self-Renewal and Regeneration. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a035519.	2.9	29
11	TNF-α Coordinates Hematopoietic Stem Cell Survival and Myeloid Regeneration. Cell Stem Cell, 2019, 25, 357-372.e7.	5.2	243
12	Losing Sense of Self and Surroundings: Hematopoietic Stem Cell Aging and Leukemic Transformation. Trends in Molecular Medicine, 2019, 25, 494-515.	3.5	84
13	Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science, 2018, 359, 1277-1283.	6.0	374
14	Identification of IRF8 as a potent tumor suppressor in murine acute promyelocytic leukemia. Blood Advances, 2018, 2, 2462-2466.	2.5	13
15	Autophagy maintains the metabolism and function of young and old stem cells. Nature, 2017, 543, 205-210.	13.7	658
16	Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis. Nature, 2017, 544, 53-58.	13.7	155
17	The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature, 2017, 544, 105-109.	13.7	805
18	The histone demethylase UTX regulates the lineage-specific epigenetic program of invariant natural killer T cells. Nature Immunology, 2017, 18, 184-195.	7.0	56

Emmanuelle Passegue

#	Article	IF	CITATIONS
19	Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nature Cell Biology, 2016, 18, 607-618.	4.6	519
20	Metabolic regulation of stem cell function in tissue homeostasis and organismal ageing. Nature Cell Biology, 2016, 18, 823-832.	4.6	238
21	Progressive Chromatin Condensation and H3K9 Methylation Regulate the Differentiation of Embryonic and Hematopoietic Stem Cells. Stem Cell Reports, 2015, 5, 728-740.	2.3	106
22	Normal and Leukemic Stem Cell Niches: Insights and Therapeutic Opportunities. Cell Stem Cell, 2015, 16, 254-267.	5.2	358
23	Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E566-75.	3.3	329
24	Functionally Distinct Subsets of Lineage-Biased Multipotent Progenitors Control Blood Production in Normal and Regenerative Conditions. Cell Stem Cell, 2015, 17, 35-46.	5.2	494
25	Transcription and methylation analysis of preleukemic promyelocytes indicate a dual role for PML/RARA in leukemia initiation. Haematologica, 2015, 100, 1064-75.	1.7	14
26	Identification of FOXM1 as a therapeutic target in B-cell lineage acute lymphoblastic leukaemia. Nature Communications, 2015, 6, 6471.	5.8	41
27	Replication stress caused by low MCM expression limits fetal erythropoiesis and hematopoietic stem cell functionality. Nature Communications, 2015, 6, 8548.	5.8	92
28	Functional evidence implicating chromosome 7q22 haploinsufficiency in myelodysplastic syndrome pathogenesis. ELife, 2015, 4, .	2.8	17
29	Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons. Journal of Experimental Medicine, 2014, 211, 245-262.	4.2	246
30	Surviving change: the metabolic journey of hematopoietic stem cells. Trends in Cell Biology, 2014, 24, 479-487.	3.6	120
31	Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature, 2014, 512, 198-202.	13.7	519
32	Pro-inflammatory cytokines: Emerging players regulating HSC function in normal and diseased hematopoiesis. Experimental Cell Research, 2014, 329, 248-254.	1.2	177
33	Myeloproliferative Neoplasia Remodels the Endosteal Bone Marrow Niche into a Self-Reinforcing Leukemic Niche. Cell Stem Cell, 2013, 13, 285-299.	5.2	532
34	Linking HSCs to their youth. Nature Cell Biology, 2013, 15, 885-887.	4.6	20
35	Metabolic Makeover for HSCs. Cell Stem Cell, 2013, 12, 1-3.	5.2	52
36	Resilient and resourceful: Genome maintenance strategies in hematopoietic stem cells. Experimental Hematology, 2013, 41, 915-923.	0.2	48

Emmanuelle Passegue

#	Article	IF	CITATIONS
37	FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature, 2013, 494, 323-327.	13.7	518
38	Born to survive: Autophagy in hematopoietic stem cell maintenance. Cell Cycle, 2013, 12, 1979-1980.	1.3	11
39	Dynamic expression of the Robo ligand Slit2 in bone marrow cell populations. Cell Cycle, 2012, 11, 675-682.	1.3	23
40	Activated Gs signaling in osteoblastic cells alters the hematopoietic stem cell niche in mice. Blood, 2012, 120, 3425-3435.	0.6	68
41	Stem cells assessed. Nature Reviews Molecular Cell Biology, 2012, 13, 471-476.	16.1	31
42	DNA-Damage Response in Tissue-Specific and Cancer Stem Cells. Cell Stem Cell, 2011, 8, 16-29.	5.2	288
43	Cell cycle regulation in hematopoietic stem cells. Journal of Cell Biology, 2011, 195, 709-720.	2.3	362
44	IL-6 Controls Leukemic Multipotent Progenitor Cell Fate and Contributes to Chronic Myelogenous Leukemia Development. Cancer Cell, 2011, 20, 661-673.	7.7	273
45	Mechanisms controlling hematopoietic stem cell functions during normal hematopoiesis and hematological malignancies. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2011, 3, 681-701.	6.6	96
46	Validation of MdmX as a therapeutic target for reactivating p53 in tumors. Genes and Development, 2011, 25, 1746-1757.	2.7	72
47	Cell cycle regulation in hematopoietic stem cells. Journal of Experimental Medicine, 2011, 208, i34-i34.	4.2	1
48	The transcription factor Srf regulates hematopoietic stem cell adhesion. Blood, 2010, 116, 4464-4473.	0.6	30
49	Molecular Signatures of Quiescent, Mobilized and Leukemia-Initiating Hematopoietic Stem Cells. PLoS ONE, 2010, 5, e8785.	1.1	114
50	PML-RARα and Dnmt3a1 Cooperate <i>in vivo</i> to Promote Acute Promyelocytic Leukemia. Cancer Research, 2010, 70, 8792-8801.	0.4	24
51	Hematopoietic Stem Cell Quiescence Promotes Error-Prone DNA Repair and Mutagenesis. Cell Stem Cell, 2010, 7, 174-185.	5.2	521
52	On the Streets of San Francisco: Highlights from the ISSCR Annual Meeting 2010. Cell Stem Cell, 2010, 7, 443-450.	5.2	1
53	Oncogenic Kras Initiates Leukemia in Hematopoietic Stem Cells. PLoS Biology, 2009, 7, e1000059.	2.6	89
54	JunB Protects against Myeloid Malignancies by Limiting Hematopoietic Stem Cell Proliferation and Differentiation without Affecting Self-Renewal. Cancer Cell, 2009, 15, 341-352.	7.7	127

#	Article	IF	CITATIONS
55	Cancer stem cells are everywhere. Nature Medicine, 2009, 15, 23-23.	15.2	17
56	IFN-α wakes up sleeping hematopoietic stem cells. Nature Medicine, 2009, 15, 612-613.	15.2	47
57	HIF1α Induces the Recruitment of Bone Marrow-Derived Vascular Modulatory Cells to Regulate Tumor Angiogenesis and Invasion. Cancer Cell, 2008, 13, 206-220.	7.7	1,037
58	The Transcription Factor EGR1 Controls Both the Proliferation and Localization of Hematopoietic Stem Cells. Cell Stem Cell, 2008, 2, 380-391.	5.2	281
59	Hematopoietic Stem Cell Quiescence Is Maintained by Compound Contributions of the Retinoblastoma Gene Family. Cell Stem Cell, 2008, 3, 416-428.	5.2	139
60	MicroRNA-126 Regulates HOXA9 by Binding to the Homeobox. Molecular and Cellular Biology, 2008, 28, 4609-4619.	1.1	141
61	JunB Limits Hematopoietic Stem Cell (HSC) Functions as a Protective Mechanism against Initiation of Myeloid Malignancy. Blood, 2008, 112, 1358-1358.	0.6	0
62	K-RasG12D expression induces hyperproliferation and aberrant signaling in primary hematopoietic stem/progenitor cells. Blood, 2007, 109, 3945-3952.	0.6	103
63	Evidence that the Pim1 kinase gene is a direct target of HOXA9. Blood, 2007, 109, 4732-4738.	0.6	58
64	FoxOs Are Critical Mediators of Hematopoietic Stem Cell Resistance toÂPhysiologic Oxidative Stress. Cell, 2007, 128, 325-339.	13.5	1,416
65	Deciphering JunB Function in Regulating Hematopoietic Stem Cell Functions Blood, 2007, 110, 777-777.	0.6	0
66	New Evidence Supporting Megakaryocyte-Erythrocyte Potential of Flk2/Flt3+ Multipotent Hematopoietic Progenitors. Cell, 2006, 126, 415-426.	13.5	179
67	Regulating Quiescence: New Insights into Hematopoietic Stem Cell Biology. Developmental Cell, 2006, 10, 415-417.	3.1	23
68	fester, a Candidate Allorecognition Receptor from a Primitive Chordate. Immunity, 2006, 25, 163-173.	6.6	90
69	A game of subversion. Nature, 2006, 442, 754-755.	13.7	11
70	Essential role of Jun family transcription factors in PU.1 knockdown–induced leukemic stem cells. Nature Genetics, 2006, 38, 1269-1277.	9.4	167
71	Sustained regression of tumors upon MYC inactivation requires p53 or thrombospondin-1 to reverse the angiogenic switch. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16266-16271.	3.3	144
72	Leukemic Stem Cells: Where do They Come From?. Stem Cell Reviews and Reports, 2005, 1, 181-188.	5.6	38

#	Article	IF	CITATIONS
73	Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. Journal of Experimental Medicine, 2005, 202, 1599-1611.	4.2	553
74	Hematopoietic Stem Cells, Leukemic Stem Cells and Chronic Myelogenous Leukemia. Cell Cycle, 2005, 4, 265-267.	1.3	15
75	Essential Role of Jun Family Transcription Factors in PU.1-Induced Leukemic Stem Cell Transformation Blood, 2005, 106, 463-463.	0.6	4
76	Investigation of Hematopoietic Stem Cell and Progenitor Populations: Implication for Cell Fate Determination and Lineage Commitment Blood, 2005, 106, 801-801.	0.6	2
77	Cell Cycle Regulation and Cell Fate Decisions in Hematopoietic Stem Cells Blood, 2005, 106, 1349-1349.	0.6	0
78	Chronic versus acute myelogenous leukemia. Cancer Cell, 2004, 6, 531-533.	7.7	46
79	JunB Deficiency Leads to a Myeloproliferative Disorder Arising from Hematopoietic Stem Cells. Cell, 2004, 119, 431-443.	13.5	384
80	MLL-GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice. Cancer Cell, 2003, 3, 161-171.	7.7	197
81	Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes and Development, 2003, 17, 3029-3035.	2.7	570
82	Normal and leukemic hematopoiesis: Are leukemias a stem cell disorder or a reacquisition of stem cell characteristics?. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11842-11849.	3.3	570
83	JunB inhibits proliferation and transformation in B-lymphoid cells. Blood, 2003, 102, 4159-4165.	0.6	76
84	JunB can substitute for Jun in mouse development and cell proliferation. Nature Genetics, 2002, 30, 158-166.	9.4	132
85	Chronic Myeloid Leukemia with Increased Granulocyte Progenitors in Mice Lacking JunB Expression in the Myeloid Lineage. Cell, 2001, 104, 21-32.	13.5	215
86	AP-1 in mouse development and tumorigenesis. Oncogene, 2001, 20, 2401-2412.	2.6	667
87	Multiple intracellular signallings are involved in thyrotropin-releasing hormone (TRH)-induced c-fos and jun B mRNA levels in clonal prolactin cells. Molecular and Cellular Endocrinology, 1995, 107, 29-40.	1.6	19
88	Thyrotropin-Releasing Hormone Stimulates in Parallel jun B and c-fos Messenger Ribonucleic Acids in GH3B6 Pituitary Cells: Comparison with PRL Secretion. Molecular and Cellular Neurosciences, 1994, 5, 109-118.	1.0	7
89	Hypophyseal cells model systems: the ?CH? rat tumor-derived cell lines as a tool for the study of gene expression. Cell Biology and Toxicology, 1992, 8, 29-38.	2.4	2

90 Cancer biology: A game of subversion. Nature, 0, , .

13.7 0