Dan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4078728/publications.pdf

Version: 2024-02-01

346 papers 26,233 citations

82 h-index 7496 151 g-index

356 all docs

356 docs citations

356 times ranked

26956 citing authors

#	Article	IF	CITATIONS
1	Smart heat isolator with hollow multishelled structures. Green Energy and Environment, 2023, 8, 1154-1160.	4.7	2
2	High-gravity-assisted engineering of Ni2P/g-C3N4 nanocomposites with enhanced photocatalytic performance. Green Energy and Environment, 2022, 7, 288-295.	4.7	7
3	Synergetic Enhancement of Mechanical Properties for Silk Fibers by a Green Feeding Approach with Nano-hydroxyapatite/collagen Composite Additive. Journal of Natural Fibers, 2022, 19, 5310-5320.	1.7	3
4	Controllable and high-throughput preparation of microdroplet using an ultra-high speed rotating packed bed. Chinese Journal of Chemical Engineering, 2022, 48, 116-124.	1.7	3
5	Different mechanisms of improving CH3NH3PbI3 perovskite solar cells brought by fluorinated or nitrogen doped graphdiyne. Nano Research, 2022, 15, 573-580.	5.8	15
6	Ru(bpy)32+-sensitized {001} facets LiCoO2 nanosheets catalyzed CO2 reduction reaction with 100% carbonaceous products. Nano Research, 2022, 15, 1061-1068.	5.8	24
7	Hollow structures as drug carriers: Recognition, response, and release. Nano Research, 2022, 15, 739-757.	5.8	28
8	A General Strategy for Efficiently Constructing Multifunctional Cluster Fillers Using a Three-Fluid Nozzle Spray Drying Technique for Dental Restoration. Engineering, 2022, 8, 138-147.	3.2	11
9	Highly Efficient Photothermal Conversion and Water Transport during Solar Evaporation Enabled by Amorphous Hollow Multishelled Nanocomposites. Advanced Materials, 2022, 34, e2107400.	11.1	68
10	Order-disorder transition in amorphous Vanadium-Phosphorus-Lithium cathode of lithium ion battery. Applied Surface Science, 2022, 573, 151490.	3.1	13
11	Rapid construction of hierarchically porous metal–organic frameworks by a sprayâ€drying strategy for enhanced tannic acid adsorption. AICHE Journal, 2022, 68, e17522.	1.8	6
12	Fabrication of a High-Performance and Reusable Planar Face Mask in Response to the COVID-19 Pandemic. Engineering, 2022, 9, 101-110.	3.2	11
13	Masks for COVIDâ€19. Advanced Science, 2022, 9, e2102189.	5.6	89
14	The development of hollow multishelled structure: from the innovation of synthetic method to the discovery of new characteristics. Science China Chemistry, 2022, 65, 7-19.	4.2	17
15	Triazine-graphdiyne with well-defined two kinds of active sites for simultaneous detection of Pb2+ and Cd2+. Journal of Environmental Chemical Engineering, 2022, 10, 107159.	3.3	12
16	Experimental and theoretical investigation of the tuning of electronic structure in SnO ₂ <i>via</i> Co doping for enhanced styrene epoxidation catalysis. Catalysis Science and Technology, 2022, 12, 1499-1511.	2.1	13
17	Green Synthesis of Deep Ultraviolet Response Nanophosphors with Tunable Full-Visible-Spectra Emission for Luminescent Temperature Sensing. Current Applied Materials, 2022, 01, .	0.4	1
18	Eliminating Hysteresis of Perovskite Solar Cells with Hollow TiO2 Mesoporous Electron Transport Layer. Chemical Research in Chinese Universities, 2022, 38, 117-122.	1.3	10

#	Article	IF	CITATIONS
19	Multishelled CuO/Cu2O induced fast photo-vapour generation for drinking water. Nano Research, 2022, 15, 4117-4123.	5.8	13
20	Progress and Perspectives of Hollow Multishelled Structures. Chinese Journal of Chemistry, 2022, 40, 1190-1203.	2.6	17
21	Highly Efficient Photothermal Conversion and Water Transport during Solar Evaporation Enabled by Amorphous Hollow Multishelled Nanocomposites (Adv. Mater. 7/2022). Advanced Materials, 2022, 34, .	11.1	1
22	High-Gravity-Assisted Intensified Preparation of Er-Doped and Yb/Er-Codoped CaF ₂ Upconversion Nanophosphors for Noncontact Temperature Measurement. Industrial & Description of Engineering Chemistry Research, 2022, 61, 2986-2996.	1.8	5
23	Computational and experimental study of dental resin composites with high filler content. Journal of Materials Science, 2022, 57, 5788-5804.	1.7	3
24	Green Synthesis of Nitrogen–Doped Carbon Dots from Fresh Tea Leaves for Selective Fe3+ Ions Detection and Cellular Imaging. Nanomaterials, 2022, 12, 986.	1.9	21
25	Hollow Multishell-Structured TiO ₂ /MAPbl ₃ Composite Improves Charge Utilization for Visible-Light Photocatalytic Hydrogen Evolution. Inorganic Chemistry, 2022, 61, 5397-5404.	1.9	11
26	Accurately Localizing Multiple Nanoparticles in a Multishelled Matrix Through Shellâ€to ore Evolution for Maximizing Energyâ€5torage Capability. Advanced Materials, 2022, 34, e2200206.	11,1	32
27	Glass anode crystallization for high specific capacity Lithium-ion batteries. Chemical Engineering Journal, 2022, 442, 136228.	6.6	9
28	Synthesis of curcuminâ€loaded shellac nanoparticles via coâ€precipitation in a rotating packed bed for food engineering. Journal of Applied Polymer Science, 2022, 139, .	1.3	5
29	Spray-drying-assisted fabrication of CaF2/SiO2 nanoclusters for dental restorative composites. Dental Materials, 2022, 38, 835-847.	1.6	9
30	Highly transparent liquid marble in liquid (HT-LMIL) as 3D miniaturized reactor for real-time bio-/chemical assays. Chemical Engineering Journal, 2022, 443, 136417.	6.6	6
31	Decoding lithium batteries through advanced in situ characterization techniques. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 965-989.	2.4	11
32	A Light-Powered Triboelectric Nanogenerator Based on the Photothermal Marangoni Effect. ACS Applied Materials & Samp; Interfaces, 2022, 14, 22206-22215.	4.0	8
33	Synthesis of poly(9,9-dioctylfluorene) in a rotating packed bed with enhanced performance for polymer light-emitting diodes. Polymer Chemistry, 2022, 13, 3506-3512.	1.9	10
34	Significantly enhancing electro-actuation performance of dielectric elastomer with ZrO2 nanoparticles. Composites Science and Technology, 2022, 227, 109543.	3.8	2
35	Graphdiyne Oxide Quantum Dots: The Enhancement of Peroxidase-like Activity and Their Applications in Sensing H ₂ O ₂ and Cysteine. ACS Applied Bio Materials, 2022, 5, 3418-3427.	2.3	8
36	Process intensification for Fe/Mn-nitrogen-doped carbon-based catalysts toward efficient oxygen reduction reaction of Zn-air battery. Chemical Engineering Science, 2022, 259, 117811.	1.9	8

#	Article	IF	Citations
37	Humidity-Independent, Highly Sensitive and Selective NO ₂ Sensor Based on In ₂ O ₃ Nanoflowers Decorated With Graphite Nanoflakes. IEEE Sensors Journal, 2022, 22, 14753-14761.	2.4	5
38	Inflammation accelerates <i>BCR-ABL1+</i> B-ALL development through upregulation of AID. Blood Advances, 2022, 6, 4060-4072.	2.5	3
39	Galvanic replacement reaction for in situ fabrication of litchi-shaped heterogeneous liquid metal-Au nano-composite for radio-photothermal cancer therapy. Bioactive Materials, 2021, 6, 602-612.	8.6	43
40	Highly Selective Twoâ€Electron Electrocatalytic CO ₂ Reduction on Singleâ€Atom Cu Catalysts. Small Structures, 2021, 2, 2000058.	6.9	93
41	Small Structures Bring Big Things: Performance Control of Hollow Multishelled Structures. Small Structures, 2021, 2, 2000041.	6.9	42
42	circSETD3 regulates MAPRE1 through miR-615-5p and miR-1538 sponges to promote migration and invasion in nasopharyngeal carcinoma. Oncogene, 2021, 40, 307-321.	2.6	51
43	Core–shell nano/microstructures for heterogeneous tandem catalysis. Materials Chemistry Frontiers, 2021, 5, 1126-1139.	3.2	50
44	Scalable and controllable fabrication of CNTs improved yolk-shelled Si anodes with advanced in operando mechanical quantification. Energy and Environmental Science, 2021, 14, 3502-3509.	15.6	45
45	Efficient nitrogen reduction to ammonia by fluorine vacancies with a multi-step promoting effect. Journal of Materials Chemistry A, 2021, 9, 894-899.	5.2	18
46	Introduction to hollow structures for energy applications. Materials Chemistry Frontiers, 2021, 5, 2034-2034.	3.2	2
47	Carbon dots: synthesis, properties and biomedical applications. Journal of Materials Chemistry B, 2021, 9, 6553-6575.	2.9	106
48	Investigation on Designing Meltblown Fibers for the Filtering Layer of a Mask by Cross-Scale Simulations. Industrial & Engineering Chemistry Research, 2021, 60, 1962-1971.	1.8	8
49	Innentitelbild: Delicate Control on the Shell Structure of Hollow Spheres Enables Tunable Mass Transport in Water Splitting (Angew. Chem. 13/2021). Angewandte Chemie, 2021, 133, 6906-6906.	1.6	0
50	Surface Engineering of Titanium Dioxide Nanoparticles for Silicone-Based Transparent Hybrid Films with Ultrahigh Refractive Indexes. Langmuir, 2021, 37, 2707-2713.	1.6	9
51	Delicate Control on the Shell Structure of Hollow Spheres Enables Tunable Mass Transport in Water Splitting. Angewandte Chemie, 2021, 133, 7002-7007.	1.6	8
52	Delicate Control on the Shell Structure of Hollow Spheres Enables Tunable Mass Transport in Water Splitting. Angewandte Chemie - International Edition, 2021, 60, 6926-6931.	7.2	65
53	Singleâ€cell RNA sequencing in cancer research. Journal of Experimental and Clinical Cancer Research, 2021, 40, 81.	3.5	128
54	Rapid exÂvivo assessment of cancer prognosis by fluorescence imaging of nucleolus using nitrogen doped carbon dots. Analytica Chimica Acta, 2021, 1154, 338309.	2.6	11

#	Article	IF	CITATIONS
55	Solubility and Solubility Modeling of 1,3,5-Tris(1-phenyl-1 <i>H</i> -benzimidazol-2-yl)benzene toward Nanodispersions in Organic Solvents. Journal of Chemical & Engineering Data, 2021, 66, 2568-2575.	1.0	3
56	Longâ€Lived Liquid Marbles for Green Applications. Advanced Functional Materials, 2021, 31, 2011198.	7.8	26
57	Solar Water Splitting: Hollow Multishelled Structured SrTiO ₃ with La/Rh Coâ€Doping for Enhanced Photocatalytic Water Splitting under Visible Light (Small 22/2021). Small, 2021, 17, 2170111.	5.2	2
58	Temperatureâ€Feedback Nanoplatform for NIRâ€N Pentaâ€Modal Imagingâ€Guided Synergistic Photothermal Therapy and CARâ€NK Immunotherapy of Lung Cancer. Small, 2021, 17, e2101397.	5.2	38
59	High-gravity-driven process intensified approach toward Mn2+ doped Zn2GeO4 nanophosphors for deep-ultraviolet detecting. Optik, 2021, 235, 166644.	1.4	3
60	Boosting hydrogen evolution reaction on few-layer graphdiyne by sp-N and B co-doping. APL Materials, 2021, 9, .	2.2	23
61	CaF2/SiO2 core–shell nanoparticles as novel fillers with reinforced mechanical properties and sustained fluoride ion release for dental resin composites. Journal of Materials Science, 2021, 56, 16648-16660.	1.7	6
62	A Highly Controlled Organic–Inorganic Encapsulation Nanocomposite with Versatile Features toward Wearable Device Applications. Macromolecular Rapid Communications, 2021, 42, e2100134.	2.0	1
63	Scalable synthesis of ytterbium and erbium codoped calcium molybdate phosphors as upconversion luminescent thermometer. AICHE Journal, 2021, 67, e17399.	1.8	10
64	Mechanical Robust Flexible Singleâ€Component Organic Solar Cells. Small Methods, 2021, 5, e2100481.	4.6	33
65	Construction of Cu nanoparticles embedded nitrogen–doped carbon derived from biomass for highly boosting the nitrobenzene reduction: An experimental and theoretical understanding. Chemical Engineering Journal, 2021, 419, 129640.	6.6	25
66	Cost-Effective Strategy for the Synthesis of Air-Stable $CH < SUb > 3 < SUb > 9bX < SUb > 9$	1.6	3
67	Citric acid-assisted ultrasmall CeO2 nanoparticles for efficient photocatalytic degradation of glyphosate. Chemical Engineering Journal, 2021, 425, 130640.	6.6	43
68	sp-Hybridized nitrogen doped graphdiyne for high-performance Zn–air batteries. Materials Chemistry Frontiers, 2021, 5, 7987-7992.	3.2	17
69	Prussian Blue Analogs and Their Derived Nanomaterials for Electrochemical Energy Storage and Electrocatalysis. Small Methods, 2021, 5, e2001000.	4.6	81
70	Hollow Multishelled Structured SrTiO ₃ with La/Rh Coâ€Doping for Enhanced Photocatalytic Water Splitting under Visible Light. Small, 2021, 17, e2005345.	5. 2	38
71	Heteroatoms in graphdiyne for catalytic and energy-related applications. Journal of Materials Chemistry A, 2021, 9, 19298-19316.	5.2	26
72	Preparation of transparent BaSO4 nanodispersions by high-gravity reactive precipitation combined with surface modification for transparent X-ray shielding nanocomposite films. Frontiers of Chemical Science and Engineering, 2021, 15, 902-912.	2.3	6

#	Article	IF	Citations
73	Fabrication and Application of Graphdiyne-based Heterogeneous Compositions: from the View of Interaction. Chemical Research in Chinese Universities, 2021, 37, 1158-1175.	1.3	16
74	General Synthesis of Multipleâ€Cores@Multipleâ€Shells Hollow Composites and Their Application to Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 25719-25722.	7.2	44
75	General Synthesis of Multipleâ€Cores@Multipleâ€Shells Hollow Composites and Their Application to Lithiumâ€Ion Batteries. Angewandte Chemie, 2021, 133, 25923-25926.	1.6	3
76	High-gravity-assisted preparation of aqueous dispersions of monodisperse palladium nanocrystals as pseudohomogeneous catalyst for highly efficient nitrobenzene reduction. Chemical Engineering Journal, 2020, 382, 122883.	6.6	42
77	Lattice Distortion in Hollow Multiâ€Shelled Structures for Efficient Visibleâ€Light CO ₂ Reduction with a SnS ₂ /SnO ₂ Junction. Angewandte Chemie, 2020, 132, 731-734.	1.6	41
78	Lattice Distortion in Hollow Multiâ€Shelled Structures for Efficient Visibleâ€Light CO ₂ Reduction with a SnS ₂ /SnO ₂ Junction. Angewandte Chemie - International Edition, 2020, 59, 721-724.	7.2	128
79	In situ visualization and real-time tracking of emulsion and miniemulsion polymerization at the microscale via fluorescence imaging. Chemical Engineering Science, 2020, 211, 115288.	1.9	8
80	V ₂ O ₅ Textile Cathodes with High Capacity and Stability for Flexible Lithiumâ€lon Batteries. Advanced Materials, 2020, 32, e1906205.	11.1	107
81	Synthesis of Silver Sulfide Quantum Dots Via the Liquid–Liquid Interface Reaction in a Rotating Packed Bed Reactor. Transactions of Tianjin University, 2020, 26, 273-282.	3.3	10
82	Three-dimensional assemblies of carbon nitride tubes as nanoreactors for enhanced photocatalytic hydrogen production. Journal of Materials Chemistry A, 2020, 8, 305-312.	5.2	85
83	Controllable Synthesis of Hollow Multishell Structured Co3O4 with Improved Rate Performance and Cyclic Stability for Supercapacitors. Chemical Research in Chinese Universities, 2020, 36, 68-73.	1.3	53
84	Multi-stimuli-responsive liquid marbles stabilized by superhydrophobic luminescent carbon dots for miniature reactors. Chemical Engineering Journal, 2020, 391, 123478.	6.6	19
85	Steering Hollow Multishelled Structures in Photocatalysis: Optimizing Surface and Mass Transport. Advanced Materials, 2020, 32, e2002556.	11.1	116
86	Manganese-Doped Layered Double Hydroxide: A Biodegradable Theranostic Nanoplatform with Tumor Microenvironment Response for Magnetic Resonance Imaging-Guided Photothermal Therapy. ACS Applied Bio Materials, 2020, 3, 5845-5855.	2.3	27
87	Unique structural advances of graphdiyne for energy applications. EnergyChem, 2020, 2, 100041.	10.1	48
88	Fast hyperspectral imager driven by a low-cost and compact galvo-mirror. Optik, 2020, 224, 165716.	1.4	9
89	Ionic liquid assisted multi-heteroatom doping in core-shell ZnFe2O4@rGO with highly reversible lithiation/delithiation kinetics. Journal of Alloys and Compounds, 2020, 848, 156593.	2.8	9
90	Super-strong and uniform fluorescent composite silk from trace AIE nanoparticle feeding. Composites Communications, 2020, 21, 100414.	3.3	13

#	Article	IF	Citations
91	Sulfur-based redox chemistry for electrochemical energy storage. Coordination Chemistry Reviews, 2020, 422, 213445.	9.5	28
92	Liquid Marbles in Liquid. Small, 2020, 16, e2002802.	5.2	11
93	Graphene-encapsulated nickel–copper bimetallic nanoparticle catalysts for electrochemical reduction of CO ₂ to CO. Chemical Communications, 2020, 56, 11275-11278.	2.2	23
94	Photocatalysts: Steering Hollow Multishelled Structures in Photocatalysis: Optimizing Surface and Mass Transport (Adv. Mater. 44/2020). Advanced Materials, 2020, 32, 2070328.	11.1	4
95	EBVâ€miRâ€BART12 accelerates migration and invasion in EBVâ€associated cancer cells by targeting tubulin polymerizationâ€promoting protein 1. FASEB Journal, 2020, 34, 16205-16223.	0.2	19
96	Controllable Synthesis of Upconversion Nanophosphors toward Scaleâ€Up Productions. Particle and Particle Systems Characterization, 2020, 37, 2000129.	1.2	14
97	Synthesis of Ultrasmall and Monodisperse Selenium-Doped Carbon Dots from Amino Acids for Free Radical Scavenging. Industrial & Document Research, 2020, 59, 16876-16883.	1.8	13
98	Preparation of Aqueous Nanodispersions of Disperse Dye by Highâ€Gravity Technology and Spray Drying. Chemical Engineering and Technology, 2020, 43, 2118-2125.	0.9	1
99	Hollow Nanostructures. ChemNanoMat, 2020, 6, 1419-1420.	1.5	2
100	Sequential drug release via chemical diffusion and physical barriers enabled by hollow multishelled structures. Nature Communications, 2020, 11, 4450.	5.8	52
101	Inhibiting tumor oxygen metabolism and simultaneously generating oxygen by intelligent upconversion nanotherapeutics for enhanced photodynamic therapy. Biomaterials, 2020, 251, 120088.	5.7	58
102	Hollow Micro-/Nanostructure Reviving Lithium-sulfur Batteries. Chemical Research in Chinese Universities, 2020, 36, 313-319.	1.3	70
103	Nitrogen-Doped Graphene Foam as a Metal-Free Catalyst for Reduction Reactions under a High Gravity Field. Engineering, 2020, 6, 680-687.	3.2	29
104	Dualâ€Defects Adjusted Crystalâ€Field Splitting of LaCo _{1â^'<i>x</i>} Hollow Multishelled Structures for Efficient Oxygen Evolution. Angewandte Chemie - International Edition, 2020, 59, 19691-19695.	7.2	80
105	Nucleolusâ€Targeted Photodynamic Anticancer Therapy Using Renalâ€Clearable Carbon Dots. Advanced Healthcare Materials, 2020, 9, e2000607.	3.9	61
106	Cellulose derived nitrogen and phosphorus co-doped carbon-based catalysts for catalytic reduction of p-nitrophenol. Journal of Colloid and Interface Science, 2020, 571, 100-108.	5.0	46
107	High-gravity-assisted emulsification for continuous preparation of waterborne polyurethane nanodispersion with high solids content. Frontiers of Chemical Science and Engineering, 2020, 14, 1087-1099.	2.3	12
108	Dynamic Intelligent Cu Current Collectors for Ultrastable Lithium Metal Anodes. Nano Letters, 2020, 20, 3403-3410.	4.5	77

#	Article	IF	CITATIONS
109	Transition Metal (Fe, Co, Mn) Boosting the Lithium Storage of the Multishelled NiO Anode. Energy Technology, 2020, 8, 2000008.	1.8	7
110	Can Masks Be Reused After Hot Water Decontamination During the COVID-19 Pandemic?. Engineering, 2020, 6, 1115-1121.	3.2	71
111	Dualâ€Defects Adjusted Crystalâ€Field Splitting of LaCo _{1â^'<i>x</i>} Hollow Multishelled Structures for Efficient Oxygen Evolution. Angewandte Chemie, 2020, 132, 19859-19863.	1.6	5
112	Hollow multishelled structures revive high energy density batteries. Nanoscale Horizons, 2020, 5, 1287-1292.	4.1	31
113	Co-N-C in porous carbon with enhanced lithium ion storage properties. Chemical Engineering Journal, 2020, 389, 124377.	6.6	34
114	Hollow multishell structures exercise temporal–spatial ordering and dynamic smart behaviour. Nature Reviews Chemistry, 2020, 4, 159-168.	13.8	147
115	A Hollow Multiâ€6helled Structure for Charge Transport and Active Sites in Lithiumâ€lon Capacitors. Angewandte Chemie - International Edition, 2020, 59, 4865-4868.	7.2	87
116	High-Gravity-Assisted Synthesis of Surfactant-Free Transparent Dispersions of Monodispersed MgAl-LDH Nanoparticles. Industrial & Dispersions Chemistry Research, 2020, 59, 2960-2967.	1.8	20
117	The properties of dental resin composites reinforced with silica colloidal nanoparticle clusters: Effects of heat treatment and filler composition. Composites Part B: Engineering, 2020, 186, 107791.	5.9	34
118	A Hollow Multiâ€Shelled Structure for Charge Transport and Active Sites in Lithiumâ€Ion Capacitors. Angewandte Chemie, 2020, 132, 4895-4898.	1.6	29
119	When hollow multishelled structures (HoMSs) meet metal–organic frameworks (MOFs). Chemical Science, 2020, 11, 5359-5368.	3.7	39
120	ZnO nanodispersion as pseudohomogeneous catalyst for alcoholysis of polyethylene terephthalate. Chemical Engineering Science, 2020, 220, 115642.	1.9	83
121	Efficient sequential harvesting of solar light by heterogeneous hollow shells with hierarchical pores. National Science Review, 2020, 7, 1638-1646.	4.6	57
122	Enhanced Charge Separation and Transfer of Fe 2 O 3 @Nitrogenâ€Rich Carbon Nitride Tubes for Photocatalytic Water Splitting. Energy Technology, 2020, 8, 2000108.	1.8	9
123	Controllable synthesis and evolution mechanism of monodispersed Sub-10†nm ZrO2 nanocrystals. Chemical Engineering Journal, 2020, 394, 124843.	6.6	8
124	High-gravity-assisted green synthesis of rare-earth doped calcium molybdate colloidal nanophosphors. Chinese Journal of Chemical Engineering, 2020, 28, 1744-1751.	1.7	21
125	Hollow Nanostructures for Surface/Interface Chemical Energy Storage Application. Acta Chimica Sinica, 2020, 78, 1200.	0.5	18
126	Constructing SrTiO ₃ â€"TiO ₂ Heterogeneous Hollow Multiâ€shelled Structures for Enhanced Solar Water Splitting. Angewandte Chemie, 2019, 131, 1436-1440.	1.6	42

#	Article	IF	Citations
127	Surfactant-Free Aqueous Dispersions of Shape- and Size-Controlled Zirconia Colloidal Nanocrystal Clusters with Enhanced Photocatalytic Activity. Langmuir, 2019, 35, 11755-11763.	1.6	9
128	Hollow multi-shell structured SnO ₂ with enhanced performance for ultraviolet photodetectors. Inorganic Chemistry Frontiers, 2019, 6, 1968-1972.	3.0	23
129	Loading Graphene Quantum Dots into Optical-Magneto Nanoparticles for Real-Time Tracking In Vivo. Materials, 2019, 12, 2191.	1.3	8
130	Synergistic catalysis between atomically dispersed Fe and a pyrrolic-N-C framework for CO ₂ electroreduction. Nanoscale Horizons, 2019, 4, 1411-1415.	4.1	21
131	Sandwichâ€Like Ultrathin TiS ₂ Nanosheets Confined within N, S Codoped Porous Carbon as an Effective Polysulfide Promoter in Lithiumâ€Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1901872.	10.2	186
132	Sub-kilogram-scale synthesis of highly dispersible zirconia nanoparticles for hybrid optical resins. Applied Surface Science, 2019, 491, 505-516.	3.1	11
133	A Hollowâ€Shell Structured V ₂ O ₅ Electrodeâ€Based Symmetric Full Liâ€Ion Battery with Highest Capacity. Advanced Energy Materials, 2019, 9, 1900909.	10.2	51
134	Enhanced catalytic activity of Au-CeO2/Al2O3 monolith for low-temperature CO oxidation. Catalysis Communications, 2019, 129, 105729.	1.6	24
135	Hollow Nanostructures. Advanced Materials, 2019, 31, e1904886.	11.1	1
136	Metal (MÂ= Ru, Pd and Co) embedded in C2N with enhanced lithium storage properties. Materials Today Energy, 2019, 14, 100359.	2.5	13
137	Sequential Templating Approach: Sequential Templating Approach: A Groundbreaking Strategy to Create Hollow Multishelled Structures (Adv. Mater. 38/2019). Advanced Materials, 2019, 31, 1970274.	11.1	2
138	Tuning the Doping of Europium in Gadolinium Borate Microparticles at Mesoscale Toward Efficient Production of Red Phosphors. ACS Omega, 2019, 4, 14497-14502.	1.6	8
139	Efficient Construction of SiO ₂ Colloidal Nanoparticle Clusters as Novel Fillers by a Spray-Drying Process for Dental Composites. Industrial & Engineering Chemistry Research, 2019, 58, 18178-18186.	1.8	23
140	Solubility, Solubility Modeling, and Antisolvent Precipitation of 1,3-Bis(9-carbazolyl)benzene in Organic Solvents. Journal of Chemical & Data, 2019, 64, 4349-4356.	1.0	8
141	Super-strong and Intrinsically Fluorescent Silkworm Silk from Carbon Nanodots Feeding. Nano-Micro Letters, 2019, 11, 75.	14.4	28
142	Metal-free catalytic oxidation of benzylic alcohols for benzaldehyde. Reaction Chemistry and Engineering, 2019, 4, 507-515.	1.9	17
143	Regulating the color output and simultaneously enhancing the intensity of upconversion nanoparticles <i>via</i> a dye sensitization strategy. Journal of Materials Chemistry C, 2019, 7, 8607-8615.	2.7	23
144	Hollow Multishelled Structures for Promising Applications: Understanding the Structure–Performance Correlation. Accounts of Chemical Research, 2019, 52, 2169-2178.	7.6	160

#	Article	IF	Citations
145	Hollow Multiâ€Shelled Structural TiO _{2â^'<i>x</i>} with Multiple Spatial Confinement for Longâ€Life Lithiumâ€"Sulfur Batteries. Angewandte Chemie - International Edition, 2019, 58, 9078-9082.	7.2	149
146	Hollow Multiâ€Shelled Structural TiO _{2â^'<i>x</i>} with Multiple Spatial Confinement for Longâ€Life Lithiumâ€"Sulfur Batteries. Angewandte Chemie, 2019, 131, 9176-9180.	1.6	45
147	Design of three-dimensional hierarchical TiO ₂ /SrTiO ₃ heterostructures towards selective CO ₂ photoreduction. Inorganic Chemistry Frontiers, 2019, 6, 1667-1674.	3.0	33
148	High-gravity-hydrolysis approach to transparent nanozirconia/silicone encapsulation materials of light emitting diodes devices for healthy lighting. Nano Energy, 2019, 62, 1-10.	8.2	32
149	Subcritical water processing for nanopharmaceuticals. Chemical Engineering and Processing: Process Intensification, 2019, 140, 36-42.	1.8	17
150	Stereodefined Codoping of sp-N and S Atoms in Few-Layer Graphdiyne for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2019, 141, 7240-7244.	6.6	198
151	A Rutile TiO 2 Electron Transport Layer for the Enhancement of Charge Collection for Efficient Perovskite Solar Cells. Angewandte Chemie, 2019, 131, 9514-9518.	1.6	10
152	A Rutile TiO ₂ Electron Transport Layer for the Enhancement of Charge Collection for Efficient Perovskite Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 9414-9418.	7.2	124
153	Magnetic Hydrogel with Optimally Adaptive Functions for Breast Cancer Recurrence Prevention. Advanced Healthcare Materials, 2019, 8, e1900203.	3.9	85
154	Frontispiece: Tripleâ€Shelled Manganese–Cobalt Oxide Hollow Dodecahedra with Highly Enhanced Performance for Rechargeable Alkaline Batteries. Angewandte Chemie - International Edition, 2019, 58, .	7.2	0
155	Frontispiz: Tripleâ€Shelled Manganese–Cobalt Oxide Hollow Dodecahedra with Highly Enhanced Performance for Rechargeable Alkaline Batteries. Angewandte Chemie, 2019, 131, .	1.6	0
156	Nonâ∈Magnetic Injectable Implant for Magnetic Fieldâ∈Driven Thermochemotherapy and Dual Stimuliâ∈Responsive Drug Delivery: Transformable Liquid Metal Hybrid Platform for Cancer Theranostics. Small, 2019, 15, e1900511.	5 . 2	65
157	Manganese-Based Magnetic Layered Double Hydroxide Nanoparticle: A pH-Sensitive and Concurrently Enhanced $<$ i> $>$ T $<$ i> $<$ sub> $>$ T $<$ i> $<$ sub> $>$ Ci> $>$ T $<$ i> $<$ sub> $>$ Cibonaterials Science and Engineering, 2019, 5, 2555-2562.	2.6	37
158	Effect of in vitro collagen fibrillogenesis on Langmuir-Blodgett (LB) deposition for cellular behavior regulation. Colloids and Surfaces B: Biointerfaces, 2019, 179, 48-55.	2.5	4
159	Hollow Multi‧helled Structure with Metal–Organicâ€Frameworkâ€Derived Coatings for Enhanced Lithium Storage. Angewandte Chemie - International Edition, 2019, 58, 5266-5271.	7.2	102
160	Efficient preparation of nanoscale zeroâ€valent iron by high gravity technology for enhanced Cr(VI) removal. Canadian Journal of Chemical Engineering, 2019, 97, 1451-1458.	0.9	3
161	Hollow Multiâ€Shelled Structure with Metal–Organicâ€Frameworkâ€Derived Coatings for Enhanced Lithium Storage. Angewandte Chemie, 2019, 131, 5320-5325.	1.6	15
162	Zirconia quantum dots for a nonvolatile resistive random access memory device. Frontiers of Information Technology and Electronic Engineering, 2019, 20, 1698-1705.	1.5	7

#	Article	IF	CITATIONS
163	Process Intensified Synthesis of Rare-Earth Doped \hat{l}^2 -NaYF ₄ Nanorods toward Gram-Scale Production. Industrial & Engineering Chemistry Research, 2019, 58, 22306-22314.	1.8	12
164	Design and efficient fabrication of micro-sized clusters of hydroxyapatite nanorods for dental resin composites. Journal of Materials Science, 2019, 54, 3878-3892.	1.7	19
165	High-gravity-assisted scalable synthesis of zirconia nanodispersion for light emitting diodes encapsulation with enhanced light extraction efficiency. Chemical Engineering Science, 2019, 195, 1-10.	1.9	46
166	Tripleâ€Shelled Manganese–Cobalt Oxide Hollow Dodecahedra with Highly Enhanced Performance for Rechargeable Alkaline Batteries. Angewandte Chemie - International Edition, 2019, 58, 996-1001.	7.2	104
167	Tripleâ€Shelled Manganese–Cobalt Oxide Hollow Dodecahedra with Highly Enhanced Performance for Rechargeable Alkaline Batteries. Angewandte Chemie, 2019, 131, 1008-1013.	1.6	17
168	Graphdiyne: synthesis, properties, and applications. Chemical Society Reviews, 2019, 48, 908-936.	18.7	584
169	Hollow Multishelled Structure of Heterogeneous Co ₃ O ₄ –CeO _{2â^'} <i>_x</i> Nanocomposite for CO Catalytic Oxidation. Advanced Functional Materials, 2019, 29, 1806588.	7.8	86
170	Hollow Multishelled Heterostructured Anatase/TiO ₂ (B) with Superior Rate Capability and Cycling Performance. Advanced Materials, 2019, 31, e1805754.	11.1	117
171	Preparation of fluorescent waterborne polyurethane nanodispersion by high-gravity miniemulsion polymerization for multifunctional applications. Chemical Engineering and Processing: Process Intensification, 2019, 136, 36-43.	1.8	22
172	Controllable synthesis of transparent dispersions of monodisperse anatase-TiO2 nanoparticles and nanorods. Materials Chemistry and Physics, 2019, 224, 100-106.	2.0	16
173	Constructing SrTiO ₃ –TiO ₂ Heterogeneous Hollow Multiâ€shelled Structures for Enhanced Solar Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 1422-1426.	7.2	212
174	Sequential Templating Approach: A Groundbreaking Strategy to Create Hollow Multishelled Structures. Advanced Materials, 2019, 31, e1802874.	11,1	153
175	Rotating packed bed as a novel disinfection contactor for the inactivation of E.Âcoli by ozone. Chemosphere, 2019, 214, 695-701.	4.2	21
176	Synthesis and Applications of Graphdiyneâ∈Based Metalâ∈Free Catalysts. Advanced Materials, 2019, 31, e1803762.	11.1	143
177	Selective synthesis of triacetin from glycerol catalyzed by HZSM-5/MCM-41 micro/mesoporous molecular sieve. Chinese Journal of Chemical Engineering, 2019, 27, 1073-1078.	1.7	30
178	Design of Hollow Nanostructures for Energy Storage, Conversion and Production. Advanced Materials, 2019, 31, e1801993.	11.1	313
179	CFD modelling of gas flow characteristics for the gasâ€heating holder in environmental transmission electron microscope. Canadian Journal of Chemical Engineering, 2019, 97, 777-784.	0.9	4
180	AIE Luminogens for Three-Photon Fluorescence Bioimaging. , 2019, , 425-455.		4

#	Article	IF	Citations
181	Hollow Multi-Shelled Structures of Co ₃ O ₄ Dodecahedron with Unique Crystal Orientation for Enhanced Photocatalytic CO ₂ Reduction. Journal of the American Chemical Society, 2019, 141, 2238-2241.	6.6	287
182	Effect of nanoheat stimulation mediated by magnetic nanocomposite hydrogel on the osteogenic differentiation of mesenchymal stem cells. Science China Life Sciences, 2018, 61, 448-456.	2.3	35
183	ICGâ€Sensitized NaYF ₄ :Er Nanostructure for Theranostics. Advanced Optical Materials, 2018, 6, 1701142.	3.6	56
184	Preparation of 3D graphene/iron oxides aerogels based on high-gravity intensified reactive precipitation and their applications for photo-Fenton reaction. Chemical Engineering and Processing: Process Intensification, 2018, 129, 77-83.	1.8	17
185	Recent progress in the green synthesis of rare-earth doped upconversion nanophosphors for optical bioimaging from cells to animals. Chinese Journal of Chemical Engineering, 2018, 26, 2206-2218.	1.7	26
186	Formation of multi-shelled nickel-based sulfide hollow spheres for rechargeable alkaline batteries. Inorganic Chemistry Frontiers, 2018, 5, 535-540.	3.0	66
187	Colloidal Synthesis of Semiconductor Quantum Dots toward Large-Scale Production: A Review. Industrial & Dots toward Large-Scale Production: A Review.	1.8	230
188	A theranostic nanocomposite system based on radial mesoporous silica hybridized with Fe ₃ O ₄ nanoparticles for targeted magnetic field responsive chemotherapy of breast cancer. RSC Advances, 2018, 8, 4321-4328.	1.7	30
189	Achieving a Record Fill Factor for Silicon–Organic Hybrid Heterojunction Solar Cells by Using a Fullâ€Area Metal Polymer Nanocomposite Top Electrode. Advanced Functional Materials, 2018, 28, 1705425.	7.8	24
190	Facile Synthesis of Crumpled Nitrogenâ€Doped MXene Nanosheets as a New Sulfur Host for Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1702485.	10.2	488
191	Solar Cells: Facile Synthesis of Crumpled Nitrogenâ€Doped MXene Nanosheets as a New Sulfur Host for Lithium–Sulfur Batteries (Adv. Energy Mater. 13/2018). Advanced Energy Materials, 2018, 8, 1870060.	10.2	13
192	3D Macroporous Mo <i></i> C@N with Incorporated Mo Vacancies as Anodes for Highâ€Performance Lithiumâ€Ion Batteries. Small Methods, 2018, 2, 1800040.	4.6	36
193	3Dâ€foamâ€structured nitrogenâ€doped grapheneâ€Ni catalyst for highly efficient nitrobenzene reduction. AICHE Journal, 2018, 64, 1330-1338.	1.8	17
194	Doxorubicin-loaded Fe3O4@MoS2-PEG-2DG nanocubes as a theranostic platform for magnetic resonance imaging-guided chemo-photothermal therapy of breast cancer. Nano Research, 2018, 11, 2470-2487.	5.8	50
195	Green synthesis of highly dispersed ytterbium and thulium co-doped sodium yttrium fluoride microphosphors for in situ light upconversion from near-infrared to blue in animals. Journal of Colloid and Interface Science, 2018, 511, 243-250.	5.0	18
196	In situ biomineralization by silkworm feeding with ion precursors for the improved mechanical properties of silk fiber. International Journal of Biological Macromolecules, 2018, 109, 21-26.	3.6	34
197	Efficient preparation of monodisperse CaCO3 nanoparticles as overbased nanodetergents in a high-gravity rotating packed bed reactor. Powder Technology, 2018, 325, 405-411.	2.1	28
198	Sulfuric Acid Assisted Preparation of Red-Emitting Carbonized Polymer Dots and the Application of Bio-Imaging. Nanoscale Research Letters, 2018, 13, 272.	3.1	29

#	Article	IF	Citations
199	Tuning Hydrocarbon Pool Intermediates by the Acidity of SAPO-34 Catalysts for Improving Methanol-to-Olefins Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 16867-16875.	3.2	34
200	Construction of Multishelled Binary Metal Oxides via Coabsorption of Positive and Negative Ions as a Superior Cathode for Sodium-Ion Batteries. Journal of the American Chemical Society, 2018, 140, 17114-17119.	6.6	96
201	5th Anniversary Article: Graphdiyne: Recent Achievements in Photo- and Electrochemical Conversion (Adv. Sci. 12/2018). Advanced Science, 2018, 5, 1870076.	5.6	1
202	Green catalytic engineering: A powerful tool for sustainable development in chemical industry. Frontiers of Chemical Science and Engineering, 2018, 12, 835-837.	2.3	7
203	Graphdiyne: Recent Achievements in Photo―and Electrochemical Conversion. Advanced Science, 2018, 5, 1800959.	5 . 6	93
204	Subgram-Scale Synthesis of Biomass Waste-Derived Fluorescent Carbon Dots in Subcritical Water for Bioimaging, Sensing, and Solid-State Patterning. ACS Omega, 2018, 3, 13211-13218.	1.6	40
205	Defect Makes Perfect: Metal-free Electrocatalyst for Oxygen Reduction in Acid. CheM, 2018, 4, 2262-2264.	5.8	9
206	Controllable Preparation of Monodisperse Silica Nanoparticles Using Internal Circulation Rotating Packed Bed for Dental Restorative Composite Resin. Industrial & Engineering Chemistry Research, 2018, 57, 12809-12815.	1.8	20
207	Process intensification for scalable synthesis of ytterbium and erbium co-doped sodium yttrium fluoride upconversion nanodispersions. Powder Technology, 2018, 340, 208-216.	2.1	22
208	Synthesis of Transparent Aqueous ZrO ₂ Nanodispersion with a Controllable Crystalline Phase without Modification for a High-Refractive-Index Nanocomposite Film. Langmuir, 2018, 34, 6806-6813.	1.6	50
209	High Performance, Biocompatible Dielectric Thinâ€Film Optical Filters Integrated with Flexible Substrates and Microscale Optoelectronic Devices. Advanced Optical Materials, 2018, 6, 1800146.	3.6	25
210	A Fully Biodegradable Battery for Selfâ€Powered Transient Implants. Small, 2018, 14, e1800994.	5. 2	113
211	Dendriteâ€Free Sodiumâ€Metal Anodes for Highâ€Energy Sodiumâ€Metal Batteries. Advanced Materials, 2018, 30, e1801334.	11.1	267
212	Compressed energy transfer distance for remarkable enhancement of the luminescence of Nd3+-sensitized upconversion nanoparticles. Journal of Materials Chemistry C, 2018, 6, 6597-6604.	2.7	17
213	Synthesis of transparent dispersions of aluminium hydroxide nanoparticles. Nanotechnology, 2018, 29, 305605.	1.3	4
214	Polyhedral oligomeric silsesquioxane-coated nanodiamonds for multifunctional applications. Journal of Materials Science, 2018, 53, 15915-15926.	1.7	7
215	Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nature Chemistry, 2018, 10, 924-931.	6.6	558
216	Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics, 2018, 8, 3284-3307.	4.6	272

#	Article	IF	Citations
217	Ultrastrong Absorption Meets Ultraweak Absorption: Unraveling the Energy-Dissipative Routes for Dye-Sensitized Upconversion Luminescence. Journal of Physical Chemistry Letters, 2018, 9, 4625-4631.	2.1	48
218	Resonanceâ€Enhanced Absorption in Hollow Nanoshell Spheres with Omnidirectional Detection and High Responsivity and Speed. Advanced Materials, 2018, 30, e1801972.	11.1	43
219	Biodegradable Batteries: A Fully Biodegradable Battery for Self-Powered Transient Implants (Small) Tj ETQq1 1 0.3	784314 rg 5.2	gBT ₂ /Overlock
220	Short-wave infrared emitted/excited fluorescence from carbon dots and preliminary applications in bioimaging. Materials Chemistry Frontiers, 2018, 2, 1343-1350.	3.2	20
221	Thin-Film Optical Filters: High Performance, Biocompatible Dielectric Thin-Film Optical Filters Integrated with Flexible Substrates and Microscale Optoelectronic Devices (Advanced Optical) Tj ETQq1 1 0.784:	31 %.6 gBT/	Overlock 10
222	Nanophotonic Devices: Resonance-Enhanced Absorption in Hollow Nanoshell Spheres with Omnidirectional Detection and High Responsivity and Speed (Adv. Mater. 34/2018). Advanced Materials, 2018, 30, 1870257.	11.1	3
223	Recent advances on metal-free graphene-based catalysts for the production of industrial chemicals. Frontiers of Chemical Science and Engineering, 2018, 12, 855-866.	2.3	27
224	Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6632-6637.	3.3	81
225	Electronâ€Selective Scandiumâ°'Tunnel Oxide Passivated Contact for nâ€Type Silicon Solar Cells. Solar Rrl, 2018, 2, 1800071.	3.1	15
226	Graphdiyne with Enhanced Ability for Electron Transfer. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2018, 34, 1048-1060.	2.2	29
227	Silver/graphene nanocomposites as catalysts for the reduction of ⟨i>p⟨ i>â€nitrophenol to ⟨i>p⟨ i>â€nminophenol: Materials preparation and reaction kinetics studies. Canadian Journal of Chemical Engineering, 2017, 95, 1297-1304.	0.9	16
228	Solubility of Bicalutamide, Megestrol Acetate, Prednisolone, Beclomethasone Dipropionate, and Clarithromycin in Subcritical Water at Different Temperatures from 383.15 to 443.15 K. Journal of Chemical & Chemic	1.0	10
229	Fewâ€Layer Graphdiyne Nanosheets Applied for Multiplexed Realâ€Time DNA Detection. Advanced Materials, 2017, 29, 1606755.	11.1	198
230	Efficient treatment of actual pharmaceutical wastewater by wet oxidation process in subcritical water apparatus. Canadian Journal of Chemical Engineering, 2017, 95, 2056-2062.	0.9	6
231	High rate Li-ion storage properties of MOF-carbonized derivatives coated on MnO nanowires. Materials Chemistry Frontiers, 2017, 1, 1975-1981.	3.2	39
232	Highly fluorescent N, S-co-doped carbon dots and their potential applications as antioxidants and sensitive probes for Cr (VI) detection. Sensors and Actuators B: Chemical, 2017, 248, 92-100.	4.0	173
233	Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging. Materials Science and Engineering C, 2017, 76, 856-864.	3.8	270
234	Multi-shelled hollow micro-/nanostructures: promising platforms for lithium-ion batteries. Materials Chemistry Frontiers, 2017, 1, 414-430.	3.2	189

#	Article	IF	CITATIONS
235	A green route to beclomethasone dipropionate nanoparticles via solvent anti-solvent precipitation by using subcritical water as the solvent. Powder Technology, 2017, 308, 200-205.	2.1	19
236	Highly controlled synthesis of multi-shelled NiO hollow microspheres for enhanced lithium storage properties. Materials Research Bulletin, 2017, 87, 224-229.	2.7	76
237	Sulfurized Graphene as Efficient Metal-Free Catalysts for Reduction of 4-Nitrophenol to 4-Aminophenol. Industrial & Description of 2017, 56, 13610-13617.	1.8	100
238	Nanonization of ciprofloxacin using subcritical water-ethanol mixture as the solvent: Solubility and precipitation parameters. Powder Technology, 2017, 321, 197-203.	2.1	10
239	Injectable and Self-Healing Thermosensitive Magnetic Hydrogel for Asynchronous Control Release of Doxorubicin and Docetaxel to Treat Triple-Negative Breast Cancer. ACS Applied Materials & Docetaxel to Treat Triple-Negative Breast Cancer. ACS Applied Materials & Docetaxel to Treat Triple-Negative Breast Cancer. ACS Applied Materials & Docetaxel to Treat Triple-Negative Breast Cancer. ACS Applied Materials & Docetaxel to Treat Triple-Negative Breast Cancer. ACS Applied Materials & Docetaxel to Treat Triple-Negative Breast Cancer. ACS Applied Materials & Docetaxel to Treat Triple-Negative Breast Cancer. ACS Applied Materials & Docetaxel to Treat Triple-Negative Breast Cancer. ACS Applied Materials & Docetaxel to Treat Triple-Negative Breast Cancer. ACS Applied Materials & Docetaxel to Treat Triple-Negative Breast Cancer. ACS Applied Materials & Docetaxel to Treat Triple-Negative Breast Cancer. ACS Applied Materials & Docetaxel to Treat Triple-Negative Breast Cancer. ACS Applied Materials & Docetaxel to Treat Triple-Negative Breast Cancer. ACS Applied Materials & Docetaxel to Treat Triple-Negative Breast Cancer. ACS Applied Materials & Docetaxel to Treat Triple-Negative Breast Cancer. ACS Applied Materials & Docetaxel to Triple-Negative Breast Cancer. ACS Applied Materials & Docetaxel to Triple-Negative Breast Cancer. ACS Applied Materials & Docetaxel to Triple-Negative Breast Cancer. ACS Applied Materials & Docetaxel to Triple-Negative Breast Cancer. ACS Applied Materials & Docetaxel to Triple-Negative Breast Cancer. ACS Applied Materials & Docetaxel to Triple-Negative Breast Cancer. ACS Applied Materials & Docetaxel to Triple-Negative Breast Cancer. ACS Applied Materials & Docetaxel to Triple-Negative Breast Cancer. ACS Applied Materials & Docetaxel to Triple-Negative Breast Cancer. ACS Applied Materials & Docetaxel to Triple-Negative Breast Cancer. ACS Applied Materials & Docetaxel to Triple-Negative Breast Cancer. ACS Applied Materials & Docetaxel to Triple-Negative Breast Cancer. ACS Applied Materials & Doceta	4.0	150
240	Rechargeable Batteries: Formation of Septupleâ€Shelled (Co _{2/3} Mn _{1/3} O ₄ Hollow Spheres as Electrode Material for Alkaline Rechargeable Battery (Adv. Mater. 34/2017). Advanced Materials, 2017, 29, .	11.1	12
241	Formation of Septupleâ€Shelled (Co _{2/3} Mn _{1/3})(Co _{5/6} Mn _{1/6}) ₂ O ₄ Hollow Spheres as Electrode Material for Alkaline Rechargeable Battery. Advanced Materials, 2017, 29, 1700550.	11.1	122
242	Multi-shelled TiO2/Fe2TiO5 heterostructured hollow microspheres for enhanced solar water oxidation. Nano Research, 2017, 10, 3920-3928.	5.8	94
243	Transferrin-coated magnetic upconversion nanoparticles for efficient photodynamic therapy with near-infrared irradiation and luminescence bioimaging. Nanoscale, 2017, 9, 11214-11221.	2.8	47
244	Synthesis of flower-shaped V2O5:Fe3+ microarchitectures in a high-gravity rotating packed bed with enhanced electrochemical performance for lithium ion batteries. Chemical Engineering and Processing: Process Intensification, 2017, 120, 201-206.	1.8	16
245	Facile and Scalable Preparation of Fluorescent Carbon Dots for Multifunctional Applications. Engineering, 2017, 3, 402-408.	3.2	130
246	Renewable Energy Conversion and Storage. Advanced Energy Materials, 2017, 7, 1703091.	10.2	13
247	Facile Preparation of \hat{l} ±-Calcium Sulfate Hemihydrate with Low Aspect Ratio Using High-Gravity Reactive Precipitation Combined with a Salt Solution Method at Atmospheric Pressure. Industrial & Engineering Chemistry Research, 2017, 56, 14053-14059.	1.8	14
248	Scalable Preparation of Gd ₂ O ₃ :Yb ³⁺ /Er ³⁺ Upconversion Nanophosphors in a High-Gravity Rotating Packed Bed Reactor for Transparent Upconversion Luminescent Films. Industrial & Engineering Chemistry Research, 2017, 56, 7977-7983.	1.8	38
249	Ultrafine clarithromycin nanoparticles via anti-solvent precipitation in subcritical water: Effect of operating parameters. Powder Technology, 2017, 305, 125-131.	2.1	14
250	Dually Ordered Porous TiO ₂ â€rGO Composites with Controllable Light Absorption Properties for Efficient Solar Energy Conversion. Advanced Materials, 2017, 29, 1604795.	11.1	66
251	Pencil-like imaging spectrometer for bio-samples sensing. Biomedical Optics Express, 2017, 8, 5427.	1.5	27
252	Melatonin potentiates & amp; Idquo; inside-out & amp; rdquo; nano-thermotherapy in human breast cancer cells: a potential cancer target multimodality treatment based on melatonin-loaded nanocomposite particles. International Journal of Nanomedicine, 2017, Volume 12, 7351-7363.	3.3	15

#	Article	IF	CITATIONS
253	A COMPACT PERPENDICULAR MICROSCOPY AND IMAGING SYSTEM FOR THE DETECTION OF FLUORESCENT SOLUTION FLOW. Progress in Electromagnetics Research Letters, 2017, 67, 75-79.	0.4	0
254	Uniform Twoâ€Dimensional Co ₃ O ₄ Porous Sheets: Facile Synthesis and Enhanced Photocatalytic Performance. Chemical Engineering and Technology, 2016, 39, 891-898.	0.9	50
255	Heal, Fuel, and Feed the World: Advances in Nanobiotechnology. Small, 2016, 12, 4589-4589.	5.2	2
256	Improved sensitivity via layered-double-hydroxide-uniformity-dependent chemiluminescence. Analytical and Bioanalytical Chemistry, 2016, 408, 8779-8786.	1.9	9
257	Wafer-Scale Integration of Inverted Nanopyramid Arrays for Advanced Light Trapping in Crystalline Silicon Thin Film Solar Cells. Nanoscale Research Letters, 2016, 11, 194.	3.1	27
258	Fluorescent carbon dots from milk by microwave cooking. RSC Advances, 2016, 6, 41516-41521.	1.7	63
259	Synthesis of multi-shelled MnO ₂ hollow microspheres via an anion-adsorption process of hydrothermal intensification. Inorganic Chemistry Frontiers, 2016, 3, 1065-1070.	3.0	60
260	Liquid Marbles Based on Magnetic Upconversion Nanoparticles as Magnetically and Optically Responsive Miniature Reactors for Photocatalysis and Photodynamic Therapy. Angewandte Chemie - International Edition, 2016, 55, 10795-10799.	7.2	75
261	Liquid Marbles Based on Magnetic Upconversion Nanoparticles as Magnetically and Optically Responsive Miniature Reactors for Photocatalysis and Photodynamic Therapy. Angewandte Chemie, 2016, 128, 10953-10957.	1.6	20
262	Surface Functionalization of Carbon Dots with Polyhedral Oligomeric Silsesquioxane (POSS) for Multifunctional Applications. Advanced Materials Interfaces, 2016, 3, 1500439.	1.9	38
263	Photoinduced Mild Hyperthermia and Synergistic Chemotherapy by One-Pot-Synthesized Docetaxel-Loaded Poly(lactic- <i>co</i> glycolic acid)/Polypyrrole Nanocomposites. ACS Applied Materials & Docetaxel-Loaded Poly(lactic- <i>co</i> di>-glycolic acid)/Polypyrrole Nanocomposites. ACS Applied Materials & Docetaxel-Loaded Poly(lactic- <i)-co< di=""></i)-co<>	4.0	37
264	Mesoporous titanosilicate nanoparticles: facile preparation and application in heterogeneous epoxidation of cyclohexene. RSC Advances, 2016, 6, 77481-77488.	1.7	6
265	Multi-shelled metal oxides prepared via an anion-adsorption mechanism for lithium-ion batteries. Nature Energy, 2016, 1, .	19.8	352
266	Cobalt nanoparticles imbedded into zeolite crystals: A tailor-made catalyst for one-step synthesis of gasoline from syngas. International Journal of Hydrogen Energy, 2016, 41, 21965-21978.	3.8	22
267	The recombined cccDNA produced using minicircle technology mimicked HBV genome in structure and function closely. Scientific Reports, 2016, 6, 25552.	1.6	35
268	Engineering of multi-shelled SnO ₂ hollow microspheres for highly stable lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 17673-17677.	5.2	127
269	Two-Dimensional Fully Conjugated Polymeric Photosensitizers for Advanced Photodynamic Therapy. Chemistry of Materials, 2016, 28, 8651-8658.	3.2	47
270	Mesenchymal stem cells and their secreted molecules predominantly ameliorate fulminant hepatic failure and chronic liver fibrosis in mice respectively. Journal of Translational Medicine, 2016, 14, 45.	1.8	128

#	Article	IF	Citations
271	Parthenolide ameliorates Concanavalin A-induced acute hepatitis in mice and modulates the macrophages to an anti-inflammatory state. International Immunopharmacology, 2016, 38, 132-138.	1.7	20
272	Ideal rear contact formed via employing a conjugated polymer for Si/PEDOT:PSS hybrid solar cells. RSC Advances, 2016, 6, 16010-16017.	1.7	35
273	Multi-shelled LiMn ₂ O ₄ hollow microspheres as superior cathode materials for lithium-ion batteries. Inorganic Chemistry Frontiers, 2016, 3, 365-369.	3.0	84
274	Controllable synthesis of mesostructures from TiO ₂ hollow to porous nanospheres with superior rate performance for lithium ion batteries. Chemical Science, 2016, 7, 793-798.	3.7	147
275	Fluorescent glutathione probe based on MnO 2 -phenol formaldehyde resin nanocomposite. Biosensors and Bioelectronics, 2016, 77, 299-305.	5.3	61
276	Electrodes: A New Graphdiyne Nanosheet/Pt Nanoparticle-Based Counter Electrode Material with Enhanced Catalytic Activity for Dye-Sensitized Solar Cells (Adv. Energy Mater. 12/2015). Advanced Energy Materials, 2015, 5, n/a-n/a.	10.2	1
277	Large-Area Nanosphere Self-Assembly by a Micro-Propulsive Injection Method for High Throughput Periodic Surface Nanotexturing. Nano Letters, 2015, 15, 4591-4598.	4.5	191
278	PAF-derived nitrogen-doped 3D Carbon Materials for Efficient Energy Conversion and Storage. Scientific Reports, 2015, 5, 8307.	1.6	28
279	Multi-shelled hollow micro-/nanostructures. Chemical Society Reviews, 2015, 44, 6749-6773.	18.7	603
280	Synthesis and photocatalytic activity of hierarchical flower-like SrTiO3 nanostructure. Science China Materials, 2015, 58, 192-197.	3.5	28
281	Can graphene quantum dots cause DNA damage in cells?. Nanoscale, 2015, 7, 9894-9901.	2.8	110
282	A New Graphdiyne Nanosheet/Pt Nanoparticleâ€Based Counter Electrode Material with Enhanced Catalytic Activity for Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2015, 5, 1500296.	10.2	180
283	Recent Advances in Graphene Quantum Dots for Fluorescence Bioimaging from Cells through Tissues to Animals. Particle and Particle Systems Characterization, 2015, 32, 515-523.	1.2	103
284	808 nm driven Nd ³⁺ -sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging. Nanoscale, 2015, 7, 190-197.	2.8	161
285	pHâ€Regulated Synthesis of Multiâ€Shelled Manganese Oxide Hollow Microspheres as Supercapacitor Electrodes Using Carbonaceous Microspheres as Templates. Advanced Science, 2014, 1, 1400011.	5.6	154
286	Quintupleâ€Shelled SnO ₂ Hollow Microspheres with Superior Light Scattering for Highâ€Performance Dyeâ€Sensitized Solar Cells. Advanced Materials, 2014, 26, 905-909.	11.1	283
287	Multishelled TiO ₂ Hollow Microspheres as Anodes with Superior Reversible Capacity for Lithium Ion Batteries. Nano Letters, 2014, 14, 6679-6684.	4.5	406
288	Synthesis of a hierarchically meso-macroporous TiO ₂ film based on UV light-induced in situ polymerization: application to dye-sensitized solar cells. RSC Advances, 2014, 4, 44692-44699.	1.7	10

#	Article	IF	Citations
289	Synthesis and characterization of the nickel@carbon dots hybrid material and its application in the reduction of Cr(<scp>vi</scp>). New Journal of Chemistry, 2014, 38, 5861-5867.	1.4	49
290	Preparation and photoluminescent properties of magnetic Ni@SiO2–CDs fluorescent nanocomposites. RSC Advances, 2014, 4, 7435.	1.7	11
291	Luminescent properties of milk carbon dots and their sulphur and nitrogen doped analogues. RSC Advances, 2014, 4, 51658-51665.	1.7	52
292	Two-dimensional carbon leading to new photoconversion processes. Chemical Society Reviews, 2014, 43, 4281-4299.	18.7	214
293	α-Fe ₂ O ₃ multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy and Environmental Science, 2014, 7, 632-637.	15.6	630
294	Biocompatible and Photostable AIE Dots with Red Emission for In Vivo Two-Photon Bioimaging. Scientific Reports, 2014, 4, 4279.	1.6	100
295	Tunable Two-color Luminescence and Host–guest Energy Transfer of Fluorescent Chromophores Encapsulated in Metal-Organic Frameworks. Scientific Reports, 2014, 4, 4337.	1.6	119
296	Phase evolution and photoluminescence enhancement of CePO4 nanowires from a low phosphate concentration system. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	6
297	Precursor-induced fabrication of \hat{l}^2 -Bi2O3 microspheres and their performance as visible-light-driven photocatalysts. Journal of Materials Chemistry A, 2013, 1, 9069.	5.2	107
298	Multifunctional Gold Nanorods with Ultrahigh Stability and Tunability for Inâ€Vivo Fluorescence Imaging, SERS Detection, and Photodynamic Therapy. Angewandte Chemie - International Edition, 2013, 52, 1148-1151.	7.2	222
299	Aggregation-Induced Emission Dyes forIn VivoFunctional Bioimaging. , 2013, , 209-237.		2
300	Photocatalytic Properties of Graphdiyne and Graphene Modified TiO ₂ : From Theory to Experiment. ACS Nano, 2013, 7, 1504-1512.	7.3	434
301	One dimensional CuInS2–ZnS heterostructured nanomaterials as low-cost and high-performance counter electrodes of dye-sensitized solar cells. Energy and Environmental Science, 2013, 6, 835.	15.6	164
302	Accurate Control of Multishelled Co ₃ O ₄ Hollow Microspheres as Highâ€Performance Anode Materials in Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2013, 52, 6417-6420.	7.2	650
303	Accurate Control of Multishelled Co ₃ O ₄ Hollow Microspheres as Highâ€Performance Anode Materials in Lithiumâ€Ion Batteries. Angewandte Chemie, 2013, 125, 6545-6548.	1.6	290
304	Facile synthesis of NaYF4:Yb, Ln/NaYF4:Yb core/shell upconversion nanoparticles via successive ion layer adsorption and one-pot reaction technique. CrystEngComm, 2013, 15, 4765.	1.3	20
305	Molecular Architecture of Cobalt Porphyrin Multilayers on Reduced Graphene Oxide Sheets for Highâ∈Performance Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2013, 52, 5585-5589.	7.2	242
306	Synthesis and Characterization of Hollow Cadmium Oxide Sphere with Carbon Microsphere as Template. Journal of Nanoscience and Nanotechnology, 2013, 13, 1423-1426.	0.9	4

#	Article	IF	Citations
307	Raman enhancement of graphene oxide via reduced Ag nanoparticles on the suface. , 2012, , .		O
308	Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems. Energy and Environmental Science, 2012, 5, 5604-5618.	15.6	1,069
309	Observation of Multiphotonâ€Induced Fluorescence from Graphene Oxide Nanoparticles and Applications in Inâ€Vivo Functional Bioimaging. Angewandte Chemie - International Edition, 2012, 51, 10570-10575.	7.2	147
310	Synthesis of Cu ₃ SnS ₄ nanocrystals and nanosheets by using Cu ₃₁ S ₁₆ as seeds. CrystEngComm, 2012, 14, 401-404.	1.3	36
311	Facile synthesis of Au@TiO2 core–shell hollow spheres for dye-sensitized solar cells with remarkably improved efficiency. Energy and Environmental Science, 2012, 5, 6914.	15.6	427
312	A Novel and Highly Efficient Photocatalyst Based on P25–Graphdiyne Nanocomposite. Small, 2012, 8, 265-271.	5.2	289
313	Hierarchical Hydroxyapatite Microspheres Composed of Nanorods and Their Competitive Sorption Behavior for Heavy Metal Ions. European Journal of Inorganic Chemistry, 2012, 2012, 2665-2668.	1.0	14
314	Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and InÂVivo functional imaging. Biomaterials, 2012, 33, 4851-4860.	5.7	138
315	Accurate Control of Multishelled ZnO Hollow Microspheres for Dyeâ€Sensitized Solar Cells with High Efficiency. Advanced Materials, 2012, 24, 1046-1049.	11.1	482
316	Raman enhancement of graphene oxide via reduced Ag nanoparticles on the suface. , 2012, , .		0
317	Multilayered Gold Nanorods with Tunable SERS and Fluorescence Properties for In Vivo Imaging. , 2012, , .		0
318	Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy and Environmental Science, 2011, 4, 717-724.	15.6	852
319	Using 915 nm Laser Excited Tm ³⁺ /Er ³⁺ /Ho ³⁺ -Doped NaYbF4 Upconversion Nanoparticles for <i>in Vitro</i> and Deeper <i>in Vivo</i> Bioimaging without Overheating Irradiation. ACS Nano, 2011, 5, 3744-3757.	7.3	490
320	Hierarchically Ordered Macroâ^'Mesoporous TiO ₂ â^'Graphene Composite Films: Improved Mass Transfer, Reduced Charge Recombination, and Their Enhanced Photocatalytic Activities. ACS Nano, 2011, 5, 590-596.	7.3	715
321	Enhanced biodesulfurization by expression of dibenzothiophene uptake genes in Rhodococcus erythropolis. World Journal of Microbiology and Biotechnology, 2011, 27, 1965-1970.	1.7	18
322	Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres. Applied Energy, 2011, 88, 848-852.	5.1	174
323	Formation of efficient dye-sensitized solar cells by introducing an interfacial layer of hierarchically ordered macro-mesoporous TiO2 film. Science China Chemistry, 2011, 54, 930-935.	4.2	19
324	Hierarchically Mesoporous Hematite Microspheres and Their Enhanced Formaldehydeâ€Sensing Properties. Small, 2011, 7, 578-582.	5.2	92

#	Article	IF	Citations
325	High cell density fermentation via a metabolically engineered <i>Escherichia coli</i> for the enhanced production of succinic acid. Journal of Chemical Technology and Biotechnology, 2011, 86, 512-518.	1.6	34
326	General Synthesis and Gasâ€Sensing Properties of Multipleâ€Shell Metal Oxide Hollow Microspheres. Angewandte Chemie - International Edition, 2011, 50, 2738-2741.	7.2	517
327	Fluorescence-surface enhanced Raman scattering co-functionalized gold nanorods as near-infrared probes for purely optical in vivo imaging. Biomaterials, 2011, 32, 1601-1610.	5.7	135
328	Aggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for inÂvivo imaging. Biomaterials, 2011, 32, 5880-5888.	5.7	92
329	Preparation and crystal structure of [enH2]0.5[Ho(HPO4)(SO4)(H2O)] (en; ethylenediamine). Journal of the Ceramic Society of Japan, 2010, 118, 236-240.	0.5	0
330	High-level succinic acid production and yield by lactose-induced expression of phosphoenolpyruvate carboxylase in ptsG mutant Escherichia coli. Applied Microbiology and Biotechnology, 2010, 87, 2025-2035.	1.7	28
331	Template-free hydrothermal synthesis of hollow hematite microspheres. Journal of Materials Science, 2010, 45, 5685-5691.	1.7	27
332	One-Pot Synthesis of Porous Hematite Hollow Microspheres and Their Application in Water Treatment. Journal of Nanoscience and Nanotechnology, 2010, 10, 7707-7710.	0.9	28
333	Controlled Synthesis of Terbium Orthophosphate Spindle-Like Hierarchical Nanostructures with Improved Photoluminescence. European Journal of Inorganic Chemistry, 2009, 2009, 2388-2392.	1.0	20
334	General Synthesis of Homogeneous Hollow Coreâ^'Shell Ferrite Microspheres. Journal of Physical Chemistry C, 2009, 113, 2792-2797.	1.5	220
335	Direct hydrothermal synthesis of single-crystalline hematite nanorods assisted by 1,2-propanediamine. Nanotechnology, 2009, 20, 245603.	1.3	100
336	Low-temperature hydrothermal synthesis and structure control of nano-sized CePO4. CrystEngComm, 2009, 11, 1630.	1.3	51
337	Synthesis of hematite particles with various shapes by a simple hydrothermal reaction. Journal of the Ceramic Society of Japan, 2009, 117 , 245 - 248 .	0.5	13
338	Highly efficient green organic light-emitting diodes from single exciplex emission. Applied Physics Letters, 2008, 92, 053304.	1.5	32
339	Hierarchical Three-Dimensional Cobalt Phosphate Microarchitectures: Large-Scale Solvothermal Synthesis, Characterization, and Magnetic and Microwave Absorption Properties. Journal of Physical Chemistry C, 2008, 112, 15948-15955.	1.5	77
340	Sensitized photo- and electroluminescence from Er complexes mixed with Ir complex. Applied Physics Letters, 2008, 92, 093501.	1.5	9
341	Very high-efficiency organic light-emitting diodes based on cyclometallated rhenium (I) complex. Applied Physics Letters, 2008, 92, 083302.	1.5	33
342	High efficiency electrophosphorescence device using a thin cleaving layer in an Ir-complex doped emitter layer. Applied Physics Letters, 2008, 92, 253309.	1.5	17

#	Article	IF	CITATIONS
343	Enhanced electrophosphorescence of copper complex based devices by codoping an iridium complex. Applied Physics Letters, 2007, 90, 143505.	1.5	10
344	Single crystal growth of ZrW2O8 by hydrothermal route. Journal of Crystal Growth, 2005, 283, 208-214.	0.7	37
345	Hydrothermal synthesis and crystal structure of a novel 2-D polymeric manganese (II) complex with mixed ligands. Transition Metal Chemistry, 2005, 30, 294-298.	0.7	4
346	Can NO x reduction by CO react over carbonâ€based singleâ€atom catalysts at low temperatures? A theoretical study. AICHE Journal, 0, , e17425.	1.8	2