Hai-Bo Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4078715/publications.pdf

Version: 2024-02-01

16 papers	367 citations	12 h-index	996975 15 g-index
16	16	16	446
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	New insights into iron acquisition by cyanobacteria: an essential role for ExbB-ExbD complex in inorganic iron uptake. ISME Journal, 2015, 9, 297-309.	9.8	65
2	Sll1263, a Unique Cation Diffusion Facilitator Protein that Promotes Iron Uptake in the Cyanobacterium Synechocystis sp. Strain PCC 6803. Plant and Cell Physiology, 2012, 53, 1404-1417.	3.1	38
3	Inactivation of Ca2+/H+Exchanger in Synechocystis sp. Strain PCC 6803 Promotes Cyanobacterial Calcification by Upregulating CO2-Concentrating Mechanisms. Applied and Environmental Microbiology, 2013, 79, 4048-4055.	3.1	37
4	Genomic and transcriptomic insights into the survival of the subaerial cyanobacterium <i>Nostoc flagelliforme</i> in arid and exposed habitats. Environmental Microbiology, 2019, 21, 845-863.	3.8	32
5	A unique porin meditates ironâ€selective transport through cyanobacterial outer membranes. Environmental Microbiology, 2021, 23, 376-390.	3.8	31
6	Effects of <scp>UVB</scp> Radiation on competition between the bloomâ€forming cyanobacterium <i>Microcystis aeruginosa</i> and the Chlorophyceae <i>Chlamydomonas microsphaera</i> ¹ . Journal of Phycology, 2013, 49, 318-328.	2.3	28
7	Outer Membrane Iron Uptake Pathways in the Model Cyanobacterium Synechocystis sp. Strain PCC 6803. Applied and Environmental Microbiology, 2018, 84, .	3.1	26
8	The hypothetical protein Ycf46 is involved in regulation of CO2 utilization in the cyanobacterium Synechocystis sp. PCC 6803. Planta, 2015, 241, 145-155.	3.2	19
9	Characterization of the sulfur-formation (suf) genes in Synechocystis sp. PCC 6803 under photoautotrophic and heterotrophic growth conditions. Planta, 2017, 246, 927-938.	3.2	16
10	Effects of dissolved inorganic carbon on competition of the bloom-forming cyanobacteriumMicrocystis aeruginosawith the green algaChlamydomonas microsphaera. European Journal of Phycology, 2012, 47, 1-11.	2.0	14
11	Essential roles of iron superoxide dismutase in photoautotrophic growth of Synechocystis sp. PCC 6803 and heterogeneous expression of marine Synechococcus sp. CC9311 copper/zinc superoxide dismutase within its sodB knockdown mutant. Microbiology (United Kingdom), 2014, 160, 228-241.	1.8	14
12	Acclimation to low ultraviolet $\hat{a} \in \mathbb{B}$ radiation increases photosystem I abundance and cyclic electron transfer with enhanced photosynthesis and growth in the cyanobacterium Nostoc sphaeroides. Environmental Microbiology, 2020, 22, 183-197.	3.8	14
13	Identification of an iron permease, cFTR1, in cyanobacteria involved in the iron reduction/reâ€oxidation uptake pathway. Environmental Microbiology, 2016, 18, 5005-5017.	3.8	13
14	Effects of iron availability on competition betweenMicrocystisandPseudanabaenaorChlorellaspecies. European Journal of Phycology, 2015, 50, 260-270.	2.0	9
15	Adaptive Mechanisms of the Model Photosynthetic Organisms, Cyanobacteria, to Iron Deficiency. , 2020, , 197-244.		8
16	Special roles for efflux systems in iron homeostasis of nonâ€siderophoreâ€producing cyanobacteria. Environmental Microbiology, 2022, 24, 551-565.	3.8	3