Huan-Cheng Chang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4078702/huan-cheng-chang-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 282
 12,707
 57
 102

 papers
 citations
 h-index
 g-index

 299
 13,895
 5.8
 6.3

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
282	Thermometric lateral flow immunoassay with colored latex beads as reporters for COVID-19 testing <i>Scientific Reports</i> , 2022 , 12, 3905	4.9	4
281	Mesenchymal stem/stromal cell-based therapy: mechanism, systemic safety and biodistribution for precision clinical applications. <i>Journal of Biomedical Science</i> , 2021 , 28, 28	13.3	23
280	Magnetically Modulated Fluorescence of Nitrogen-Vacancy Centers in Nanodiamonds for Ultrasensitive Biomedical Analysis. <i>Analytical Chemistry</i> , 2021 , 93, 7140-7147	7.8	6
279	Time-resolved cathodoluminescence in an ultrafast transmission electron microscope. <i>Applied Physics Letters</i> , 2021 , 119, 062106	3.4	4
278	Recent Advances in Novel Lateral Flow Technologies for Detection of COVID-19. <i>Biosensors</i> , 2021 , 11,	5.9	15
277	Relaxation of a dense ensemble of spins in diamond under a continuous microwave driving field. <i>Scientific Reports</i> , 2021 , 11, 16278	4.9	0
276	Carboxylated/Oxidized Diamond Nanoparticles for Quantifying Immunoglobulin G Antibodies Using Mass Spectrometry. <i>ACS Applied Nano Materials</i> , 2021 , 4, 8922-8936	5.6	O
275	Optical Nanoscale Thermometry: From Fundamental Mechanisms to Emerging Practical Applications. <i>Advanced Optical Materials</i> , 2020 , 8, 2000183	8.1	34
274	Tapered ultra-high numerical aperture optical fiber tip for nitrogen vacancy ensembles based endoscope in a fluidic environment. <i>Applied Physics Letters</i> , 2020 , 116, 113701	3.4	7
273	Cell Volume (3D) Correlative Microscopy Facilitated by Intracellular Fluorescent Nanodiamonds as Multi-Modal Probes. <i>Nanomaterials</i> , 2020 , 11,	5.4	4
272	Nitrogen-Vacancy Centers in Diamond for High-Performance Detection of Vacuum Ultraviolet, Extreme Ultraviolet, and X-rays. <i>ACS Applied Materials & Extreme Ultraviolet</i> , 12, 3847-3853	9.5	8
271	Nanodiamond-enabled biomedical imaging. <i>Nanomedicine</i> , 2020 , 15, 1599-1616	5.6	14
270	Nanodiamond-supported silver nanoparticles as potent and safe antibacterial agents. <i>Scientific Reports</i> , 2019 , 9, 13164	4.9	17
269	All-Optical Thermometry with Nitrogen-Vacancy Centers in Nanodiamond-Embedded Polymer Films. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 15366-15374	3.8	17
268	Bioorthogonal Fluorescent Nanodiamonds for Continuous Long-Term Imaging and Tracking of Membrane Proteins. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 19774-19781	9.5	23
267	Quantification and Imaging of Antigens on Cell Surface with Lipid-Encapsulated Fluorescent Nanodiamonds. <i>Micromachines</i> , 2019 , 10,	3.3	2
266	Mapping Dynamical Magnetic Responses of Ultrathin Micron-Size Superconducting Films Using Nitrogen-Vacancy Centers in Diamond. <i>Nano Letters</i> , 2019 , 19, 5697-5702	11.5	9

(2018-2019)

265	Intracellular Delivery of Luciferase with Fluorescent Nanodiamonds for Dual-Modality Imaging of Human Stem Cells. <i>Bioconjugate Chemistry</i> , 2019 , 30, 2228-2237	6.3	9
264	Efficient nitrogen-vacancy centers' fluorescence excitation and collection from micrometer-sized diamond by a tapered optical fiber in endoscope-type configuration. <i>Optics Express</i> , 2019 , 27, 6734-674	.5 ^{3.3}	19
263	Laser-induced heating in a high-density ensemble of nitrogen-vacancy centers in diamond and its effects on quantum sensing. <i>Optics Letters</i> , 2019 , 44, 2851	3	8
262	Fluorescent microdiamonds conjugated with hollow gold nanoparticles as photothermal fiducial markers in tissue. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 15197-15207	7.1	4
261	Light Emission from Plasmonic Nanostructures Enhanced with Fluorescent Nanodiamonds. <i>Scientific Reports</i> , 2018 , 8, 3605	4.9	16
2 60	STED-TEM Correlative Microscopy Leveraging Nanodiamonds as Intracellular Dual-Contrast Markers. <i>Small</i> , 2018 , 14, 1701807	11	26
259	Highly stable lipid-encapsulation of fluorescent nanodiamonds for bioimaging applications. <i>Chemical Communications</i> , 2018 , 54, 1000-1003	5.8	25
258	Correlative Light-Electron Microscopy of Lipid-Encapsulated Fluorescent Nanodiamonds for Nanometric Localization of Cell Surface Antigens. <i>Analytical Chemistry</i> , 2018 , 90, 1566-1571	7.8	22
257	Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror. <i>Applied Physics Letters</i> , 2018 , 113, 041107	3.4	13
256	Robust, tunable, and high purity triggered single photon source at room temperature using a nitrogen-vacancy defect in diamond in an open microcavity. <i>Optics Express</i> , 2018 , 26, 7056-7065	3.3	16
255	Biohybrid fluorescent nanodiamonds as dual-contrast markers for light and electron microscopies. Journal of the Chinese Chemical Society, 2018 , 65, 1136-1146	1.5	9
254	Single-Step Metal-Free Grafting of Cationic Polymer Brushes on Fluorescent Nanodiamonds. <i>Materials</i> , 2018 , 11,	3.5	6
253	Manipulating the distribution of electric field intensity to effectively enhance the spatial and spectral fluorescence intensity of fluorescent nanodiamonds. <i>Nanoscale</i> , 2018 , 10, 17576-17584	7.7	3
252	Recent progress in nanodiamonds: Synthesis, properties and their potential applications 2018 , 2, 1-23		6
251	Diamond Nanothermometry. ChemNanoMat, 2018, 4, 15-27	3.5	26
250	Probing Plasmon-NV0 Coupling at the Nanometer Scale with Photons and Fast Electrons. <i>ACS Photonics</i> , 2018 , 5, 324-328	6.3	13
249	High-Resolution and High-Contrast Fluorescence Imaging with Carbon Nanomaterials for Preclinical and Clinical Applications 2018 , 63-85		
248	Carbon Nanomaterials for Deep-Tissue Imaging in the NIR Spectral Window 2018 , 87-114		

7.8

Tracking Photoluminescent Carbon Nanomaterials in Biological Systems 2018, 115-137 247 2018, 246 19 Nanodiamonds 2018, 19-35 245 Color Centers in Diamond 2018, 37-54 244 Producing Fluorescent Nanodiamonds 2018, 91-112 243 Cell Labeling and Fluorescence Imaging 2018, 135-153 242 Cell Tracking and Deep Tissue Imaging 2018, 155-174 241 Functionalized Carbon Nanomaterials for Drug Delivery 2018, 265-288 240 Nanoscopic Imaging 2018, 175-193 239 238 Diamonds in the Sky 2018, 253-269 Carbon Nanomaterials for Optical Bioimaging and Phototherapy 2018, 43-62 237 Using Polymers to Enhance the Carbon Nanomaterial Biointerface 2018, 15-42 236 Introduction to Carbon Structures 2018, 1-14 235 Nanoscale Quantum Sensing 2018, 195-213 234 Single Particle Detection and Tracking 2018, 113-133 233 Nanodiamond-Enabled Medicine 2018, 235-252 232 Biocompatibility of Nanodiamonds 2018, 73-89 231

Ionization of Submicrometer-Sized Particles by Laser-Induced Radiofrequency Plasma for Mass

Spectrometric Analysis. Analytical Chemistry, 2018, 90, 13236-13242

230

229 Hybrid Fluorescent Nanodiamonds **2018**, 215-234

228	Surface Chemistry of Nanodiamonds 2018 , 55-72		
227	Single particle tracking of fluorescent nanodiamonds in cells and organisms. <i>Current Opinion in Solid State and Materials Science</i> , 2017 , 21, 35-42	12	42
226	Measuring Nanoscale Thermostability of Cell Membranes with Single Gold-Diamond Nanohybrids. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 3025-3030	16.4	53
225	Measuring Nanoscale Thermostability of Cell Membranes with Single GoldDiamond Nanohybrids. <i>Angewandte Chemie</i> , 2017 , 129, 3071-3076	3.6	O
224	Nanodiamonds as Nucleating Agents for Protein Crystallization. <i>Langmuir</i> , 2017 , 33, 6521-6527	4	14
223	Carbon structure in nanodiamonds elucidated from Raman spectroscopy. <i>Carbon</i> , 2017 , 121, 322-329	10.4	65
222	Glycosaminoglycans-Specific Cell Targeting and Imaging Using Fluorescent Nanodiamonds Coated with Viral Envelope Proteins. <i>Analytical Chemistry</i> , 2017 , 89, 6527-6534	7.8	14
221	Biomarkers and drug delivery applications 2017 , 403-417		2
220	Fluorescent nanodiamonds enable quantitative tracking of human mesenchymal stem cells in miniature pigs. <i>Scientific Reports</i> , 2017 , 7, 45607	4.9	50
219	Nanodiamond enhances immune responses in mice against recombinant HA/H7N9 protein. <i>Journal of Nanobiotechnology</i> , 2017 , 15, 69	9.4	22
218	Far-UV-Excited Luminescence of Nitrogen-Vacancy Centers: Evidence for Diamonds in Space. <i>Angewandte Chemie</i> , 2017 , 129, 14661-14665	3.6	3
217	Far-UV-Excited Luminescence of Nitrogen-Vacancy Centers: Evidence for Diamonds in Space. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 14469-14473	16.4	15
216	Diamond Nanoparticles for Drug Delivery and Monitoring. <i>Springer Series on Chemical Sensors and Biosensors</i> , 2017 , 119-140	2	1
215	Intracellular Trafficking of Fluorescent Nanodiamonds and Regulation of Their Cellular Toxicity. <i>ACS Omega</i> , 2017 , 2, 2689-2693	3.9	26
214	Fluorescent nanodiamond tracking reveals intraneuronal transport abnormalities induced by brain-disease-related genetic risk factors. <i>Nature Nanotechnology</i> , 2017 , 12, 322-328	28.7	79
213	Ubiquitin-coated nanodiamonds bind to autophagy receptors for entry into the selective autophagy pathway. <i>Autophagy</i> , 2017 , 13, 187-200	10.2	16
212	Purcell-Enhanced Single-Photon Emission from Nitrogen-Vacancy Centers Coupled to a Tunable Microcavity. <i>Physical Review Applied</i> , 2016 , 6,	4.3	58

211	Development of Visible-Wavelength MALDI Cell Mass Spectrometry for High-Efficiency Single-Cell Analysis. <i>Analytical Chemistry</i> , 2016 , 88, 11913-11918	7.8	13
210	Directional fluorescence emission from a compact plasmonic-diamond hybrid nanostructure. <i>Laser and Photonics Reviews</i> , 2016 , 10, 647-655	8.3	24
209	A fully-aqueous red-fluorescent probe for selective optical sensing of Hg2+ and its application in living cells. <i>Dyes and Pigments</i> , 2016 , 130, 256-265	4.6	6
208	Fluorescent Nanodiamond: A Versatile Tool for Long-Term Cell Tracking, Super-Resolution Imaging, and Nanoscale Temperature Sensing. <i>Accounts of Chemical Research</i> , 2016 , 49, 400-7	24.3	208
207	Bioimaging and Quantum Sensing Using NV Centers in Diamond Nanoparticles. <i>Carbon Nanostructures</i> , 2016 , 109-137	0.6	3
206	Streamlined Membrane Proteome Preparation for Shotgun Proteomics Analysis with Triton X-100 Cloud Point Extraction and Nanodiamond Solid Phase Extraction. <i>Materials</i> , 2016 , 9,	3.5	12
205	Diamonds in space: a brief history and recent laboratory studies. <i>Journal of Physics: Conference Series</i> , 2016 , 728, 062004	0.3	5
204	Direct synthesis of nanodiamonds by femtosecond laser irradiation of ethanol. <i>Scientific Reports</i> , 2016 , 6, 33966	4.9	39
203	Simultaneous cathodoluminescence and electron microscopy cytometry of cellular vesicles labeled with fluorescent nanodiamonds. <i>Nanoscale</i> , 2016 , 8, 11588-94	7.7	25
202	Mass Measurement of Single Intact Nanoparticles in a Cylindrical Ion Trap. <i>Analytical Chemistry</i> , 2016 , 88, 5958-62	7.8	5
201	Detonation nanodiamond toxicity in human airway epithelial cells is modulated by air oxidation. <i>Diamond and Related Materials</i> , 2015 , 58, 16-23	3.5	12
200	Photon bunching in cathodoluminescence. <i>Physical Review Letters</i> , 2015 , 114, 197401	7.4	61
199	Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery. <i>Scientific Reports</i> , 2015 , 5, 11661	4.9	77
198	Protein Attachment on Nanodiamonds. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 7704-11	2.8	32
197	Polarization effects in lattice-STED microscopy. Faraday Discussions, 2015, 184, 37-49	3.6	6
196	Time-Resolved Luminescence Nanothermometry with Nitrogen-Vacancy Centers in Nanodiamonds. <i>Nano Letters</i> , 2015 , 15, 3945-52	11.5	78
195	Targeted nanodiamonds as phenotype-specific photoacoustic contrast agents for breast cancer. <i>Nanomedicine</i> , 2015 , 10, 573-87	5.6	30
194	Nanoparticle distribution during systemic inflammation is size-dependent and organ-specific. Nanoscale, 2015 , 7, 15863-72	7.7	56

193	Nanodiamond-mediated drug delivery and imaging: challenges and opportunities. <i>Expert Opinion on Drug Delivery</i> , 2015 , 12, 735-49	8	85
192	A new pyrene-based aggregation induced ratiometric emission probe for selective detections of trivalent metal ions and its living cell application. <i>Sensors and Actuators B: Chemical</i> , 2015 , 207, 338-345	8.5	52
191	Gold/diamond nanohybrids for quantum sensing applications. EPJ Quantum Technology, 2015, 2,	6.9	32
190	Tracking and Finding Slow-Proliferating/Quiescent Cancer Stem Cells with Fluorescent Nanodiamonds. <i>Small</i> , 2015 , 11, 4394-402	11	26
189	Nanodiamond-Mediated Intercellular Transport of Proteins through Membrane Tunneling Nanotubes. <i>Small</i> , 2015 , 11, 6097-105	11	23
188	All-optical single-nanoparticle ratiometric thermometry with a noise floor of 0.3 K Hz(-1/2). <i>Nanotechnology</i> , 2015 , 26, 245501	3.4	45
187	Preparation and Characterization of Ion-Irradiated Nanodiamonds as Photoacoustic Contrast Agents. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 1037-44	1.3	12
186	Nanodiamonds 2015 , 30-42		
185	Wide-field imaging and flow cytometric analysis of cancer cells in blood by fluorescent nanodiamond labeling and time gating. <i>Scientific Reports</i> , 2014 , 4, 5574	4.9	65
184	The effect of fluorescent nanodiamonds on neuronal survival and morphogenesis. <i>Scientific Reports</i> , 2014 , 4, 6919	4.9	49
183	Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds. <i>Scientific Reports</i> , 2014 , 4, 5004	4.9	54
182	Unambiguous observation of shape effects on cellular fate of nanoparticles. <i>Scientific Reports</i> , 2014 , 4, 4495	4.9	165
181	Sub-diffraction imaging of nitrogen-vacancy centers in diamond by stimulated emission depletion and structured illumination. <i>RSC Advances</i> , 2014 , 4, 11305	3.7	33
180	Quantitative assessment of protein adsorption on microparticles with particle mass spectrometry. <i>Analytical Chemistry</i> , 2014 , 86, 3876-81	7.8	12
179	A facile ratiometric fluorescent chemodosimeter for hydrazine based on IngManske hydrazinolysis and its applications in living cells. <i>Dyes and Pigments</i> , 2014 , 103, 9-20	4.6	63
178	AS1411 aptamer-conjugated Gd2O3:Eu nanoparticles for target-specific computed tomography/magnetic resonance/fluorescence molecular imaging. <i>Nano Research</i> , 2014 , 7, 658-669	10	28
177	Electron spin resonance of nitrogen-vacancy defects embedded in single nanodiamonds in an ABEL trap. <i>Nano Letters</i> , 2014 , 14, 5335-41	11.5	22
176	Recent Developments and Applications of Nanodiamonds as Versatile Bioimaging Agents. <i>Journal of the Chinese Chemical Society</i> , 2014 , 61, 67-76	1.5	18

175	Multi-color imaging of fluorescent nanodiamonds in living HeLa cells using direct electron-beam excitation. <i>ChemPhysChem</i> , 2014 , 15, 721-6	3.2	29
174	Layer-by-layer thin film of reduced graphene oxide and gold nanoparticles as an effective sample plate in laser-induced desorption/ionization mass spectrometry. <i>Analytica Chimica Acta</i> , 2014 , 809, 97-	1036	25
173	Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds. <i>Nature Nanotechnology</i> , 2013 , 8, 682-9	28.7	208
172	Creation of high density ensembles of nitrogen-vacancy centers in nitrogen-rich type Ib nanodiamonds. <i>Nanotechnology</i> , 2013 , 24, 315702	3.4	70
171	Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo. <i>Biomaterials</i> , 2013 , 34, 8352-60	15.6	67
170	The hemocompatibility of oxidized diamond nanocrystals for biomedical applications. <i>Scientific Reports</i> , 2013 , 3, 3044	4.9	29
169	Fluorescence lifetime imaging microscopy of nanodiamonds in vivo 2013,		29
168	Highly Fluorescent Nanodiamonds Protein-Functionalized for Cell Labeling and Targeting. <i>Advanced Functional Materials</i> , 2013 , 23, 5737-5745	15.6	106
167	Fluorescent Nanodiamonds and Their Prospects in Bioimaging 2013, 445-471		1
166	Quenching nitrogenNacancy center photoluminescence with an infrared pulsed laser. <i>New Journal of Physics</i> , 2013 , 15, 033030	2.9	21
165	Detection of a few metallo-protein molecules using color centers in nanodiamonds. <i>Nano Letters</i> , 2013 , 13, 3305-9	11.5	140
164	Ambient aerodynamic desorption/ionization method for microparticle mass measurement. <i>Analytical Chemistry</i> , 2013 , 85, 4370-5	7.8	10
163	Quantitative analysis of oligosaccharides derived from sulfated glycosaminoglycans by nanodiamond-based affinity purification and matrix-assisted laser desorption/ionization mass spectrometry. <i>Analytical Chemistry</i> , 2013 , 85, 4342-9	7.8	17
162	Photoacoustic contrast imaging of biological tissues with nanodiamonds fabricated for high near-infrared absorbance. <i>Journal of Biomedical Optics</i> , 2013 , 18, 26018	3.5	28
161	photoacoustic imaging of breast cancer tumor with HER2-targeted nanodiamonds. <i>Proceedings of SPIE</i> , 2013 , 8815,	1.7	3
160	Tip-enhanced sub-diffraction fluorescence imaging of nitrogen-vacancy centers in nanodiamonds. <i>Applied Physics Letters</i> , 2013 , 102, 013102	3.4	9
159	Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond. <i>Physical Review A</i> , 2013 , 88,	2.6	48
158	Acid Denaturation and Refolding of Cytochrome c on Silica Surface. <i>Journal of the Chinese Chemical Society</i> , 2013 , 60, 140-152	1.5	

(2011-2013)

157	Spatially and spectrally resolved cathodoluminescence with fast electrons: A tool for background subtraction in luminescence intensity second-order correlation measurements applied to subwavelength inhomogeneous diamond nanocrystals. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2013 , 210, 2060-2065	1.6	13
156	Wavelet-based method for time-domain noise analysis and reduction in a frequency-scan ion trap mass spectrometer. <i>Journal of the American Society for Mass Spectrometry</i> , 2012 , 23, 1855-64	3.5	9
155	The development of charge detection-quadrupole ion trap mass spectrometry driven by rectangular and triangular waves. <i>Analyst, The</i> , 2012 , 137, 1199-204	5	7
154	Fluorescent diamond nanoparticle as a probe of intracellular traffic in primary neurons in culture 2012 ,		3
153	High-salt-tolerance matrix for facile detection of glucose in rat brain microdialysates by MALDI mass spectrometry. <i>Analytical Chemistry</i> , 2012 , 84, 465-9	7.8	76
152	The long-term stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent. <i>Biomaterials</i> , 2012 , 33, 7794-802	15.6	197
151	N-(1-naphthyl) ethylenediamine dinitrate: a new matrix for negative ion MALDI-TOF MS analysis of small molecules. <i>Journal of the American Society for Mass Spectrometry</i> , 2012 , 23, 1454-60	3.5	38
150	Photoacoustic emission from fluorescent nanodiamonds enhanced with gold nanoparticles. <i>Biomedical Optics Express</i> , 2012 , 3, 1662-29	3.5	41
149	Measuring the number of (N-V)^Itenters in single fluorescent nanodiamonds in the presence of quenching effects. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2012 , 29, 2309	1.7	8
148	Exploring cytoplasmic dynamics in zebrafish yolk cells by single particle tracking of fluorescent nanodiamonds 2012 ,		10
147	Biomedical Micro Probe for Super Resolved Image Extraction 2012 , 581-595		
146	Measuring FEster resonance energy transfer between fluorescent nanodiamonds and near-infrared dyes by acceptor photobleaching. <i>Diamond and Related Materials</i> , 2011 , 20, 803-807	3.5	22
145	Nonblinking green emission from single H3 color centers in nanodiamonds. <i>Applied Physics Letters</i> , 2011 , 98, 193116	3.4	24
144	SAX microscopy with fluorescent nanodiamond probes for high-resolution fluorescence imaging. <i>Biomedical Optics Express</i> , 2011 , 2, 1946-54	3.5	26
143	Polarization modulation spectroscopy of single fluorescent nanodiamonds with multiple nitrogen vacancy centers. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 1878-84	2.8	12
142	The exocytosis of fluorescent nanodiamond and its use as a long-term cell tracker. <i>Small</i> , 2011 , 7, 3363	-7 <u>10</u> 1	111
141	Superresolution Imaging of Albumin-Conjugated Fluorescent Nanodiamonds in Cells by Stimulated Emission Depletion. <i>Angewandte Chemie</i> , 2011 , 123, 2310-2313	3.6	7
140	Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 2262-5	16.4	149

139	Fluorescent Nanodiamond IA Novel Nanomaterial for In Vivo Applications. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1362, 1		6
138	Characterization of column packing materials in high-performance liquid chromatography by charge-detection quadrupole ion trap mass spectrometry. <i>Analytical Chemistry</i> , 2011 , 83, 5400-6	7.8	9
137	Development and Use of Fluorescent Nanodiamonds as Cellular Markers 2010 , 127-150		7
136	In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. <i>Nano Letters</i> , 2010 , 10, 3692-9	11.5	444
135	Design of Nanodiamond Based Drug Delivery Patch for Cancer Therapeutics and Imaging Applications 2010 , 249-284		2
134	Two-photon fluorescence correlation spectroscopy of lipid-encapsulated fluorescent nanodiamonds in living cells. <i>Optics Express</i> , 2010 , 18, 5896-905	3.3	69
133	Applications of Surface-Functionalized Diamond Nanoparticles for Mass-Spectrometry-Based Proteomics. <i>Journal of the Chinese Chemical Society</i> , 2010 , 57, 583-594	1.5	17
132	Nanodiamonds for optical bioimaging. <i>Journal Physics D: Applied Physics</i> , 2010 , 43, 374021	3	108
131	Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds. <i>Physical Review B</i> , 2010 , 82,	3.3	192
130	Sub-20-nm fluorescent nanodiamonds as photostable biolabels and fluorescence resonance energy transfer donors. <i>Advanced Materials</i> , 2010 , 22, 843-7	24	114
129	Mapping protein cysteine sulfonic acid modifications with specific enrichment and mass spectrometry: an integrated approach to explore the cysteine oxidation. <i>Proteomics</i> , 2010 , 10, 2961-71	4.8	41
128	Quantifying the number of color centers in single fluorescent nanodiamonds by photon correlation spectroscopy and Monte Carlo simulation. <i>Applied Physics Letters</i> , 2009 , 94, 013104	3.4	23
127	Numerous isomers of serine octamer ions characterized by infrared photodissociation spectroscopy. <i>ChemPhysChem</i> , 2009 , 10, 2603-6	3.2	35
126	Quantum chemical modeling of photoadsorption properties of the nitrogen-vacancy point defect in diamond. <i>Journal of Computational Chemistry</i> , 2009 , 30, 119-31	3.5	31
125	Alkali-hydroxide-doped matrices for structural characterization of neutral underivatized oligosaccharides by MALDI time-of-flight mass spectrometry. <i>Journal of Mass Spectrometry</i> , 2009 , 44, 375-83	2.2	14
124	Receptor-mediated cellular uptake of folate-conjugated fluorescent nanodiamonds: a combined ensemble and single-particle study. <i>Small</i> , 2009 , 5, 2716-21	11	124
123	Excitation properties of the H3 defect center in diamond: A theoretical study. <i>Chemical Physics Letters</i> , 2009 , 475, 68-72	2.5	4
122	Functionalized fluorescent nanodiamonds for biomedical applications. <i>Nanomedicine</i> , 2009 , 4, 47-55	5.6	146

(2007-2009)

121	Quantum Chemical Modeling of Photoabsorption Properties of Two- and Three-Nitrogen Vacancy Point Defects in Diamond. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 10432-10440	3.8	24
120	Preparation and characterization of green fluorescent nanodiamonds for biological applications. <i>Diamond and Related Materials</i> , 2009 , 18, 567-573	3.5	84
119	Ultrahigh-mass mass spectrometry of single biomolecules and bioparticles. <i>Annual Review of Analytical Chemistry</i> , 2009 , 2, 169-85	12.5	24
118	Fluorescence enhancement and lifetime modification of single nanodiamonds near a nanocrystalline silver surface. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 1508-14	3.6	45
117	The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake. <i>Nanotechnology</i> , 2009 , 20, 425103	3.4	134
116	Mass production and dynamic imaging of fluorescent nanodiamonds. <i>Nature Nanotechnology</i> , 2008 , 3, 284-8	28.7	625
115	One- and two-photon absorption properties of diamond nitrogen-vacancy defect centers: A theoretical study. <i>Journal of Chemical Physics</i> , 2008 , 129, 124714	3.9	18
114	Selective extraction and enrichment of multiphosphorylated peptides using polyarginine-coated diamond nanoparticles. <i>Analytical Chemistry</i> , 2008 , 80, 3791-7	7.8	74
113	Charge monitoring cell mass spectrometry. <i>Analytical Chemistry</i> , 2008 , 80, 2524-30	7.8	39
112	Facile MALDI-MS analysis of neutral glycans in NaOH-doped matrixes: microwave-assisted deglycosylation and one-step purification with diamond nanoparticles. <i>Analytical Chemistry</i> , 2008 , 80, 6809-14	7.8	30
111	Potential energy surfaces for the lowest excited states of the nitrogen-vacancy point defects in diamonds: A quantum chemical study. <i>Chemical Physics Letters</i> , 2008 , 462, 251-255	2.5	7
110	Calibration of a frequency-scan quadrupole ion trap mass spectrometer for microparticle mass analysis. <i>International Journal of Mass Spectrometry</i> , 2008 , 270, 8-15	1.9	28
109	Calculation of the vibrationally non-relaxed photo-induced electron transfer rate constant in dye-sensitized solar cells. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 853-61	3.6	8
108	High-speed mass analysis of whole erythrocytes by charge-detection quadrupole ion trap mass spectrometry. <i>Analytical Chemistry</i> , 2007 , 79, 7401-7	7.8	36
107	Determination of Surface Coverage and Orientation of Reduced Cytochrome c on a Silica Surface with Polarized ATR Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 13062-13067	3.8	12
106	Theoretical DFT study of fragmentation and association of heme and hemin. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 9207-17	2.8	30
105	Adsorption and hydrolytic activity of lysozyme on diamond nanocrystallites. <i>Diamond and Related Materials</i> , 2007 , 16, 872-876	3.5	125
104	Charge-monitoring laser-induced acoustic desorption mass spectrometry for cell and microparticle mass distribution measurement. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 3865-9	16.4	50

103	Charge-Monitoring Laser-Induced Acoustic Desorption Mass Spectrometry for Cell and Microparticle Mass Distribution Measurement. <i>Angewandte Chemie</i> , 2007 , 119, 3939-3943	3.6	10
102	Peptide analysis: solid phase extraction-elution on diamond combined with atmospheric pressure matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry. <i>Analytical Biochemistry</i> , 2007 , 367, 190-200	3.1	22
101	Matrix-assisted laser desorption/ionization (MALDI) mechanism revisited. <i>Analytica Chimica Acta</i> , 2007 , 582, 1-9	6.6	99
100	Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 727-32	11.5	725
99	Symmetric double-well potential model and its application to vibronic spectra: studies of inversion modes of ammonia and nitrogen-vacancy defect centers in diamond. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 9347-54	2.8	19
98	Two-photon excited fluorescence of nitrogen-vacancy centers in proton-irradiated type Ib diamond. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 9379-86	2.8	138
97	Laser-induced acoustic desorption mass spectrometry of single bioparticles. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 1423-6	16.4	56
96	Progressive stabilization of zwitterionic structures in [H(Ser)(2-8)]+ studied by infrared photodissociation spectroscopy. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 4130-4	16.4	72
95	Microscopy-based mass measurement of a single whole virus in a cylindrical ion trap. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 8131-4	16.4	30
94	Laser-Induced Acoustic Desorption Mass Spectrometry of Single Bioparticles. <i>Angewandte Chemie</i> , 2006 , 118, 1451-1454	3.6	4
93	Progressive Stabilization of Zwitterionic Structures in [H(Ser)2B]+ Studied by Infrared Photodissociation Spectroscopy. <i>Angewandte Chemie</i> , 2006 , 118, 4236-4240	3.6	12
92	Microscopy-Based Mass Measurement of a Single Whole Virus in a Cylindrical Ion Trap. <i>Angewandte Chemie</i> , 2006 , 118, 8311-8314	3.6	7
91	Dissociation of heme from gaseous myoglobin ions studied by infrared multiphoton dissociation spectroscopy and Fourier-transform ion cyclotron resonance mass spectrometry. <i>Journal of Chemical Physics</i> , 2006 , 125, 133310	3.9	6
90	Theoretical treatments of ultrafast electron transfer from adsorbed dye molecule to semiconductor nanocrystalline surface. <i>Journal of Chemical Physics</i> , 2006 , 125, 154706	3.9	15
89	Solid-phase extraction and elution on diamond (SPEED): a fast and general platform for proteome analysis with mass spectrometry. <i>Analytical Chemistry</i> , 2006 , 78, 4228-34	7.8	69
88	Nanodiamond as a Possible Carrier of Extended Red Emission. <i>Astrophysical Journal</i> , 2006 , 639, L63-L66	4.7	42
87	Frequency Scan of a Quadrupole Mass Analyzer in the Third Stability Region for Protein Analysis. <i>Journal of the Chinese Chemical Society</i> , 2006 , 53, 47-52	1.5	5
86	Theoretical study of the structure and stability of the ferriporphyrin dimer (Fe(III)C34H31N4O4)2. Russian Journal of Inorganic Chemistry, 2006 , 51, 89-98	1.5	3

(2004-2006)

85	Theoretical study of BeeplFragmentation of hemin ion with successive loss of methyl and vinyl groups. <i>Russian Journal of Inorganic Chemistry</i> , 2006 , 51, 1613-1622	1.5	6
84	Polylysine-coated diamond nanocrystals for MALDI-TOF mass analysis of DNA oligonucleotides. <i>Analytical Chemistry</i> , 2005 , 77, 4273-7	7.8	120
83	Vibrational predissociation spectra and hydrogen-bond topologies of H+(H2O)9-11. <i>Physical Chemistry Chemical Physics</i> , 2005 , 7, 938-44	3.6	78
82	Molar mass and molar mass distribution of polystyrene particle size standards. <i>Analytical Chemistry</i> , 2005 , 77, 7084-9	7.8	29
81	Averaging peak-to-peak voltage detector for absolute mass determination of single particles with quadrupole ion traps. <i>Review of Scientific Instruments</i> , 2005 , 76, 023108	1.7	11
80	High-affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis. <i>Analytical Chemistry</i> , 2005 , 77, 259-65	7.8	230
79	Recent advances in understanding the structures of medium-sized protonated water clusters. <i>International Reviews in Physical Chemistry</i> , 2005 , 24, 553-578	7	97
78	Local structure dependence of the charge transfer band in nanocrystalline Y2O3:Eu3+. <i>Chemical Physics Letters</i> , 2005 , 405, 314-317	2.5	47
77	Fragmentation of heme and hemin+ with sequential loss of carboxymethyl groups: A DFT and mass-spectrometry study. <i>Chemical Physics Letters</i> , 2005 , 415, 362-369	2.5	31
76	Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. <i>Journal of the American Chemical Society</i> , 2005 , 127, 17604-5	16.4	814
75	Protonated clathrate cages enclosing neutral water molecules: (H+)(H2O)21 and (H+)(H2O)28. Journal of Chemical Physics, 2005 , 122, 074315	3.9	139
74	Surface CH stretching features on meteoritic nanodiamonds. <i>Astronomy and Astrophysics</i> , 2004 , 416, 235-241	5.1	40
73	Comparative Studies of H+(C6H6)(H2O)1,2 and H+(C5H5N)(H2O)1,2 by DFT Calculations and IR Spectroscopy. <i>Australian Journal of Chemistry</i> , 2004 , 57, 1153	1.2	11
72	Adsorption and Immobilization of Cytochrome c on Nanodiamonds. <i>Langmuir</i> , 2004 , 20, 5879-5884	4	346
71	Optical detection methods for mass spectrometry of macroions. <i>Mass Spectrometry Reviews</i> , 2004 , 23, 443-65	11	29
70	Microsolvation of the lithium ion by methanol in the gas phase. Chemical Physics Letters, 2004, 388, 45	7- 4 62	13
69	Stabilization of yeast cytochrome C covalently immobilized on fused silica surfaces. <i>Journal of the American Chemical Society</i> , 2004 , 126, 10828-9	16.4	18
68	Measuring masses of single bacterial whole cells with a quadrupole ion trap. <i>Journal of the American Chemical Society</i> , 2004 , 126, 11766-7	16.4	47

67	Structural Isomerism and Competitive Proton Solvation between Methanol and Water in H+(CH3OH)m(H2O)n,m+n= 4\(\textit{D}\) Journal of Physical Chemistry A, 2004 , 108, 2859-2866	2.8	31
66	Adsorption and immobilization of cytochrome c on nanodiamonds. <i>Langmuir</i> , 2004 , 20, 5879-84	4	27
65	Laser-induced fluorescence/ion trap as a detector for mass spectrometric analysis of nanoparticles. <i>International Journal of Mass Spectrometry</i> , 2003 , 229, 67-76	1.9	29
64	Probing Adsorption, Orientation and Conformational Changes of Cytochrome c on Fused Silica Surfaces with the Soret Band Journal of Physical Chemistry A, 2003, 107, 10687-10694	2.8	34
63	Ion trap mass spectrometry of fluorescently labeled nanoparticles. <i>Analytical Chemistry</i> , 2003 , 75, 1805	- 1/1 8	32
62	Investigations of Protonated and Deprotonated Water Clusters Using a Low-Temperature 22-Pole Ion Trap. <i>Journal of Physical Chemistry A</i> , 2003 , 107, 4217-4225	2.8	109
61	Vibrational Predissociation Spectroscopic and Ab Initio Theoretical Studies on Protonated Ethylenediamine (Water) 3 Complex. <i>Journal of Physical Chemistry A</i> , 2003 , 107, 5007-5013	2.8	13
60	Size dependence of CH stretching features on diamond nanocrystal surfaces: Infrared spectroscopy and density functional theory calculations. <i>Journal of Chemical Physics</i> , 2003 , 119, 10626-10632	3.9	24
59	Hydration-induced conformational changes in protonated 2,4-pentanedione in the gas phase. <i>Molecular Physics</i> , 2003 , 101, 1285-1295	1.7	10
58	Calibration of an audio-frequency ion trap mass spectrometer. <i>International Journal of Mass Spectrometry</i> , 2002 , 214, 63-73	1.9	18
57	The size of interstellar nanodiamonds revealed by infrared spectra of CH on synthetic diamond nanocrystal surfaces. <i>Journal of Chemical Physics</i> , 2002 , 116, 1211-1214	3.9	22
56	On the First Overtone Spectra of Protonated Water Clusters [H+(H2O)3B] in the Free-OH Stretch Region. <i>Journal of the Chinese Chemical Society</i> , 2002 , 49, 769-775	1.5	8
55	Laboratory Investigation of Hydrogenated Diamond Surfaces: Implications for the Formation and Size of Interstellar Nanodiamonds. <i>Astrophysical Journal</i> , 2002 , 581, L55-L58	4.7	26
54	Single-particle mass spectrometry of polystyrene microspheres and diamond nanocrystals. <i>Analytical Chemistry</i> , 2002 , 74, 232-8	7.8	42
53	Hydrogen Bond Rearrangements and Interconversions of H+(CH3OH)4H2O Cluster Isomers Journal of Physical Chemistry A, 2002 , 106, 10937-10944	2.8	29
52	Optical detection and charge-state analysis of MALDI-generated particles with molecular masses larger than 5 MDa. <i>Analytical Chemistry</i> , 2002 , 74, 4434-40	7.8	31
51	HYDROGEN CHEMISTRY ON DIAMOND SURFACES: ADSORPTION, DESORPTION, AND VIBRATIONAL SPECTROSCOPY 2001 , 315-355		
50	Infrared spectra and isomeric structures of hydroxide ion-water clusters OH- (H2O)1-5: a comparison with H3O (H2O)1-5. <i>Molecular Physics</i> , 2001 , 99, 1161-1173	1.7	83

(1998-2001)

49	Characterization of Protonated Formamide-Containing Clusters by Infrared Spectroscopy and ab Initio Calculations. II. Hydration of Formamide in the Gas Phase. <i>Journal of Physical Chemistry A</i> , 2001 , 105, 8906-8915	2.8	27
48	Behaviors of an excess proton in solute-containing water clusters: A case study of H+(CH3OH)(H2O)1B. <i>Journal of Chemical Physics</i> , 2000 , 112, 176-188	3.9	54
47	Identification of CH3OH2+ and H3O+-centered cluster isomers from fragment-dependent vibrational predissociation spectra of H+(CH3OH)4H2O. <i>Journal of Chemical Physics</i> , 2000 , 112, 7279-72	28 2 9	20
46	Power Laser Ligh-Induced Photoluminescence from Detonation-Synthesized 5nm-Sized Diamonds. <i>Defect and Diffusion Forum</i> , 2000 , 186-187, 37-44	0.7	
45	Infrared Spectra of H+(H2O)5-8 Clusters: Evidence for Symmetric Proton Hydration. <i>Journal of the American Chemical Society</i> , 2000 , 122, 1398-1410	16.4	309
44	Characterization of Protonated Formamide-Containing Clusters by Infrared Spectroscopy and Ab Initio Calculations: I. O-Protonation. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 9556-9565	2.8	28
43	Hydrogen-Bond Rearrangement and Intermolecular Proton Transfer in Protonated Methanol Clusters. <i>Israel Journal of Chemistry</i> , 1999 , 39, 231-243	3.4	25
42	Multiphoton-Excited Luminescence from Diamond Nanoparticles. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 4251-4263	3.4	34
41	Migration of an Excess Proton upon Asymmetric Hydration: H+[(CH3)2O](H2O)n as a Model System. <i>Journal of the American Chemical Society</i> , 1999 , 121, 4443-4450	16.4	48
40	Proton-Assisted Hydration at Hydrophobic Sites in Protonated Ether and Keto Dimers. <i>Journal of Physical Chemistry A</i> , 1999 , 103, 8753-8761	2.8	12
39	Ab initio Studies of NH4+(H2O)1-5 and the Influence of Hydrogen-Bonding Nonadditivity on Geometries and Vibrations. <i>Journal of Physical Chemistry A</i> , 1999 , 103, 3123-3135	2.8	60
38	Isomeric Transitions between Linear and Cyclic H+(CH3OH)4,5: Implications for Proton Migration in Liquid Methanol. <i>Journal of Physical Chemistry A</i> , 1999 , 103, 2941-2944	2.8	56
37	Theory of Vibrational Predissociation Spectroscopy. <i>Journal of the Chinese Chemical Society</i> , 1999 , 46, 417-426	1.5	2
36	On the Search for H5O2+centered Water Clusters in the Gas Phase. <i>Journal of the Chinese Chemical Society</i> , 1999 , 46, 427-434	1.5	13
35	The free-OH stretching frequencies of 3-coordinated H2O in water clusters and on ice surfaces. <i>Chemical Physics Letters</i> , 1998 , 289, 373-382	2.5	41
34	Studying protonated ion hydration by infrared spectroscopy of size-selected NH4+(H2O)n clusters in a free jet expansion. <i>International Journal of Mass Spectrometry</i> , 1998 , 179-180, 91-102	1.9	43
33	Structures and Isomeric Transitions of NH4+(H2O)3-6: From Single to Double Rings. <i>Journal of the American Chemical Society</i> , 1998 , 120, 8777-8788	16.4	104
32	Laser-Induced Intracluster Reactions of Oxygen-Containing Nanodiamonds. <i>Chemistry of Materials</i> , 1998 , 10, 1735-1737	9.6	13

31	Vibrational predissociation dynamics of ArHF (3000) and (3110): Lifetimes and HF product state distributions. <i>Journal of Chemical Physics</i> , 1998 , 109, 8836-8841	3.9	15
30	Vibrational predissociation of an inert gas cluster containing an active molecule: The vHF=3 spectrum of Ar3HF. <i>Journal of Chemical Physics</i> , 1998 , 109, 484-491	3.9	9
29	The absolute absorption strength and vibrational coupling of CH stretching on diamond C(111). <i>Journal of Chemical Physics</i> , 1997 , 106, 7411-7421	3.9	30
28	Direct Observation of Hydrogen Etching Anisotropy on Diamond Single Crystal Surfaces. <i>Physical Review Letters</i> , 1997 , 78, 3713-3716	7.4	74
27	Effect of temperature on the infrared and sum-frequency generation spectra of adsorbates. <i>Journal of Chemical Physics</i> , 1997 , 106, 5920-5927	3.9	20
26	Laser-induced fluorescence spectroscopy of Ar2HF at vHF=3: An examination of three-body forces. Journal of Chemical Physics, 1997 , 107, 7041-7056	3.9	15
25	Identifying 2- and 3-coordinated H2O in protonated ionWater clusters by vibrational pre-dissociation spectroscopy and ab initio calculations. <i>Journal of Chemical Physics</i> , 1997 , 107, 9695-96	5 98 9	66
24	Reassignment of the 11 537 cm-1 Band of Hydrogen Fluoride Dimer and Observation of the Intermolecular Combination Mode 31 + 4. <i>Journal of Physical Chemistry A</i> , 1997 , 101, 6702-6708	2.8	13
23	Structure and Bonding of C2H2 on Diamond C(111) 11:H: Infrared Spectroscopy and Exciton Calculations. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 7018-7025		8
22	Characterization of CH stretches on diamond C(111) single- and nanocrystal surfaces by infrared absorption spectroscopy. <i>Journal of Chemical Physics</i> , 1996 , 105, 8977-8978	3.9	29
21	A phenomenological model for the vibrational dependence of hydrogen interchange tunneling in HF dimer. <i>Journal of Chemical Physics</i> , 1996 , 104, 7830-7835	3.9	21
20	The vibrational dephasing and relaxation of CH and CD stretches on diamond surfaces: An anomaly. <i>Journal of Chemical Physics</i> , 1996 , 105, 3975-3983	3.9	45
19	Intermolecular state dependence of the vibrational predissociation of N2HF. <i>Journal of Chemical Physics</i> , 1996 , 105, 4385-4387	3.9	16
18	Infrared spectroscopy of adsorbed CO2 as a probe for the surface heterogeneity of diamond C(111)-1 1 :H. <i>Applied Physics Letters</i> , 1995 , 67, 2474-2476	3.4	7
17	Infrared spectroscopy and vibrational relaxation of CHx and CDx stretches on synthetic diamond nanocrystal surfaces. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 11081-11088		57
16	Dependence of the Interaction Potentials of Ar-HF and N2-HF on HF Bond Length. <i>Journal of the Chinese Chemical Society</i> , 1995 , 42, 141-148	1.5	2
15	Vibrational Spectroscopy As a Probe of Surface Heterogeneity: CO on NaCl(100). <i>Journal of the Chinese Chemical Society</i> , 1995 , 42, 317-324	1.5	10
14	Characterization of N2HF at 3.nu.1 HF Stretch. <i>The Journal of Physical Chemistry</i> , 1994 , 98, 7313-7318		13

LIST OF PUBLICATIONS

13	The vibrational second overtones of HF dimer: A quartet. <i>Journal of Chemical Physics</i> , 1994 , 100, 1-14	3.9	62
12	Vibrational predissociation of HFHCl by overtone excitation of HF. <i>Canadian Journal of Physics</i> , 1994 , 72, 963-966	1.1	2
11	High-overtone spectroscopy and photodissociation of hydrogen fluoride complexes. <i>Faraday Discussions</i> , 1994 , 97, 95	3.6	9
10	State-specific vibrational predissociation and interconversion tunneling quenching at 3🛭 and 3🗗 of (HF)2. <i>Journal of Chemical Physics</i> , 1993 , 98, 9266-9278	3.9	43
9	The ArHF intermolecular potential: Overtone spectroscopy and ab initio calculations. <i>Journal of Chemical Physics</i> , 1993 , 99, 9337-9349	3.9	67
8	Observation of ArHF(3000) and its combination modes by laser-induced fluorescence. <i>Journal of Chemical Physics</i> , 1993 , 98, 2497-2506	3.9	42
7	Vibrational relaxation of molecules on alkali halide surfaces. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 1990 , 54-55, 39-63	1.7	25
6	Infrared fluorescence from a monolayer of CO on NaCl(100). <i>Physical Review Letters</i> , 1990 , 65, 2125-21	2 8 .4	94
5	Infrared spectroscopy of CO on NaCl(100) IV. Bandshape analysis. Surface Science, 1990 , 240, 193-210	1.8	78
4	The quantum efficiency of vibrationally induced desorption for a monolayer of CO on NaCl(100). <i>Chemical Physics</i> , 1989 , 139, 55-65	2.3	34
3	Infrared spectroscopy of CO on NaCl(100). Surface Science, 1989, 216, 93-104	1.8	70
2	Epitaxial growth of CO on NaCl(100) studied by infrared spectroscopy. <i>Journal of Chemical Physics</i> , 1988 , 89, 7561-7568	3.9	83
1	Dynamic-ultrastructural cell volume (3D) correlative microscopy facilitated by intracellular fluorescent nanodiamonds as multi-modal probes		2