Lisa K Belden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4078197/publications.pdf

Version: 2024-02-01

79 papers

5,663 citations

147801 31 h-index 79698 73 g-index

79 all docs

79 docs citations

79 times ranked

5555 citing authors

#	Article	IF	CITATIONS
1	An experimental test of disease resistance function in the skin-associated bacterial communities of three tropical amphibian species. FEMS Microbiology Ecology, 2022, 98, .	2.7	2
2	Host preferences inhibit transmission from potential superspreader host species. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220084.	2.6	1
3	Body condition, skin bacterial communities and disease status: insights from the first release trial of the limosa harlequin frog, <i>Atelopus limosus</i> Sciences, 2022, 289, .	2.6	7
4	Seasonal changes and the unexpected impact of environmental disturbance on skin bacteria of individual amphibians in a natural habitat. FEMS Microbiology Ecology, 2021, 97, .	2.7	10
5	Morphological and molecular characterization of Quinqueserialis (Digenea: Notocotylidae) species diversity in North America. Parasitology, 2021, 148, 1083-1091.	1.5	2
6	Assessing age, breeding stage, and mating activity as drivers of variation in the reproductive microbiome of female tree swallows. Ecology and Evolution, 2021, 11, 11398-11413.	1.9	9
7	Experimental test of microbiome protection across pathogen doses reveals importance of resident microbiome composition. FEMS Microbiology Ecology, 2021, 97, .	2.7	7
8	Horsenettle ($\langle i \rangle$ Solanum carolinense $\langle i \rangle$) fruit bacterial communities are not variable across fine spatial scales. PeerJ, 2021, 9, e12359.	2.0	0
9	Systematic review of modelling assumptions and empirical evidence: Does parasite transmission increase nonlinearly with host density?. Methods in Ecology and Evolution, 2020, 11, 476-486.	5.2	48
10	Cloacal bacterial communities of tree swallows (Tachycineta bicolor): Similarity within a population, but not between pair-bonded social partners. PLoS ONE, 2020, 15, e0228982.	2.5	8
11	Spatial scale and structure of complex life cycle trematode parasite communities in streams. PLoS ONE, 2020, 15, e0241973.	2.5	5
12	Amphibian skin fungal communities vary across host species and do not correlate with infection by a pathogenic fungus. Environmental Microbiology, 2019, 21, 2905-2920.	3.8	16
13	Integrating the role of antifungal bacteria into skin symbiotic communities of three Neotropical frog species. ISME Journal, 2019, 13, 1763-1775.	9.8	31
14	Ecological Correlates of Large-Scale Turnover in the Dominant Members of Pseudacris crucifer Skin Bacterial Communities. Microbial Ecology, 2019, 78, 832-842.	2.8	7
15	Community richness of amphibian skin bacteria correlates with bioclimate at the global scale. Nature Ecology and Evolution, 2019, 3, 381-389.	7.8	68
16	Comparative Analysis of Anuran Amphibian Skin Microbiomes Across Inland and Coastal Wetlands. Microbial Ecology, 2019, 78, 348-360.	2.8	16
17	Skin bacterial communities of neotropical treefrogs vary with local environmental conditions at the time of sampling. PeerJ, 2019, 7, e7044.	2.0	22
18	Surveys for Population Persistence and Bd at the Northeastern Range Edge of the Eastern Lesser Siren. Northeastern Naturalist, 2019, 26, 410.	0.3	1

#	Article	IF	Citations
19	The Skin Microbiome of the Neotropical Frog Craugastor fitzingeri: Inferring Potential Bacterial-Host-Pathogen Interactions From Metagenomic Data. Frontiers in Microbiology, 2018, 9, 466.	3.5	36
20	Handling times and saturating transmission functions in a snail–worm symbiosis. Oecologia, 2018, 188, 277-287.	2.0	3
21	Testosterone levels are positively correlated with cloacal bacterial diversity and the relative abundance of Chlamydiae in breeding male rufousâ€collared sparrows. Functional Ecology, 2017, 31, 192-203.	3.6	24
22	Variation in Metabolite Profiles of Amphibian Skin Bacterial Communities Across Elevations in the Neotropics. Microbial Ecology, 2017, 74, 227-238.	2.8	34
23	Dominanceâ€function relationships in the amphibian skin microbiome. Environmental Microbiology, 2017, 19, 3387-3397.	3.8	24
24	Diversity and stability of eggâ€bacterial assemblages: The role of paternal care in the glassfrog <i>Hyalinobatrachium colymbiphyllum</i> . Biotropica, 2017, 49, 792-802.	1.6	25
25	Defensive Symbionts Mediate Host–Parasite Interactions at Multiple Scales. Trends in Parasitology, 2017, 33, 53-64.	3.3	48
26	Eye of the Finch: characterization of the ocular microbiome of house finches in relation to mycoplasmal conjunctivitis. Environmental Microbiology, 2017, 19, 1439-1449.	3.8	17
27	Resident Microbiome Disruption with Antibiotics Enhances Virulence of a Colonizing Pathogen. Scientific Reports, 2017, 7, 16177.	3.3	33
28	Culture Media and Individual Hosts Affect the Recovery of Culturable Bacterial Diversity from Amphibian Skin. Frontiers in Microbiology, 2017, 8, 1574.	3.5	35
29	Skin bacterial microbiome of a generalist Puerto Rican frog varies along elevation and land use gradients. PeerJ, 2017, 5, e3688.	2.0	75
30	Using "Omics―and Integrated Multi-Omics Approaches to Guide Probiotic Selection to Mitigate Chytridiomycosis and Other Emerging Infectious Diseases. Frontiers in Microbiology, 2016, 7, 68.	3.5	135
31	Harnessing the Microbiome to Prevent Fungal Infections: Lessons from Amphibians. PLoS Pathogens, 2016, 12, e1005796.	4.7	73
32	Host community composition and defensive symbionts determine trematode parasite abundance in host communities. Ecosphere, 2016, 7, e01278.	2.2	7
33	Short-Term Exposure to Coal Combustion Waste Has Little Impact on the Skin Microbiome of Adult Spring Peepers (Pseudacris crucifer). Applied and Environmental Microbiology, 2016, 82, 3493-3502.	3.1	21
34	Skin bacterial diversity of Panamanian frogs is associated with host susceptibility and presence of <i>Batrachochytrium dendrobatidis</i> . ISME Journal, 2016, 10, 1682-1695.	9.8	194
35	Panamanian frog species host unique skin bacterial communities. Frontiers in Microbiology, 2015, 6, 1171.	3.5	144
36	Community Structure and Function of Amphibian Skin Microbes: An Experiment with Bullfrogs Exposed to a Chytrid Fungus. PLoS ONE, 2015, 10, e0139848.	2.5	120

#	Article	IF	Citations
37	Antifungal isolates database of amphibian skinâ€associated bacteria and function against emerging fungal pathogens. Ecology, 2015, 96, 595-595.	3.2	192
38	Variable infection of stream salamanders in the southern Appalachians by the trematode Metagonimoides oregonensis (family: Heterophyidae). Parasitology Research, 2015, 114, 3159-3165.	1.6	3
39	Most of the Dominant Members of Amphibian Skin Bacterial Communities Can Be Readily Cultured. Applied and Environmental Microbiology, 2015, 81, 6589-6600.	3.1	58
40	More than Skin Deep: Functional Genomic Basis for Resistance to Amphibian Chytridiomycosis. Genome Biology and Evolution, 2015, 7, 286-298.	2.5	110
41	Dispersal of a defensive symbiont depends on contact between hosts, host health, and host size. Oecologia, 2015, 179, 307-318.	2.0	10
42	Phylogenetic distribution of symbiotic bacteria from Panamanian amphibians that inhibit growth of the lethal fungal pathogen <i>Batrachochytrium dendrobatidis</i> . Molecular Ecology, 2015, 24, 1628-1641.	3.9	118
43	Composition of symbiotic bacteria predicts survival in Panamanian golden frogs infected with a lethal fungus. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142881.	2.6	165
44	The Lethal Fungus Batrachochytrium dendrobatidis Is Present in Lowland Tropical Forests of Far Eastern PanamÄ _i . PLoS ONE, 2014, 9, e95484.	2.5	53
45	Host Density and Competency Determine the Effects of Host Diversity on Trematode Parasite Infection. PLoS ONE, 2014, 9, e105059.	2.5	14
46	The effect of captivity on the cutaneous bacterial community of the critically endangered Panamanian golden frog (Atelopus zeteki). Biological Conservation, 2014, 176, 199-206.	4.1	117
47	Amphibian skin may select for rare environmental microbes. ISME Journal, 2014, 8, 2207-2217.	9.8	255
48	Echinostoma trivolvis (Digenea: Echinostomatidae) second intermediate host preference matches host suitability. Parasitology Research, 2013, 112, 799-805.	1.6	10
49	Pond Acidification May Explain Differences in Corticosterone among Salamander Populations. Physiological and Biochemical Zoology, 2013, 86, 224-232.	1.5	24
50	Parasite predators exhibit a rapid numerical response to increased parasite abundance and reduce transmission to hosts. Ecology and Evolution, 2013, 3, 4427-4438.	1.9	25
51	Revealing Cryptic Parasite Diversity in a Definitive Host: Echinostomes in Muskrats. Journal of Parasitology, 2012, 98, 1148-1155.	0.7	47
52	Species loss in the brown world: are heterotrophic systems inherently stable?. Aquatic Sciences, 2012, 74, 397-404.	1.5	5
53	Corticosterone Level Changes throughout Larval Development in the Amphibians Rana sylvatica and Ambystoma jeffersonianum Reared under Laboratory, Mesocosm, or Free-living Conditions. Copeia, 2011, 2011, 530-538.	1.3	27
54	The Assembly of Ecological Communities Inferred from Taxonomic and Functional Composition. American Naturalist, 2011, 177, 630-644.	2.1	27

#	Article	IF	CITATIONS
55	The combined influence of trematode parasites and predatory salamanders on wood frog (Rana) Tj ETQq $1\ 1\ 0.784$	1314 rgBT 2:0	/Overlock 1
56	Experimental examination of the effects of ultraviolet-B radiation in combination with other stressors on frog larvae. Oecologia, 2010, 162, 237-245.	2.0	29
57	Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, 2010, 468, 647-652.	27.8	1,481
58	Hatching of Echinostoma trivolvis miracidia in response to snail host and non-host chemical cues. Parasitology Research, 2009, 105, 883-885.	1.6	5
59	Relative Toxicity of Malathion to Trematode-Infected and Noninfected Rana palustris Tadpoles. Archives of Environmental Contamination and Toxicology, 2009, 56, 123-128.	4.1	31
60	Effects of Atrazine and Metolachlor on the Survivorship and Infectivity of Echinostoma trivolvis Trematode Cercariae. Archives of Environmental Contamination and Toxicology, 2008, 54, 195-202.	4.1	40
61	Searching for the Physiological Mechanism of Density Dependence: Does Corticosterone Regulate Tadpole Responses to Density?. Physiological and Biochemical Zoology, 2007, 80, 444-451.	1.5	29
62	Infectious diseases in wildlife: the community ecology context. Frontiers in Ecology and the Environment, 2007, 5, 533-539.	4.0	104
63	Corticosterone and Growth in Pacific Treefrog (Hyla regilla) Tadpoles. Copeia, 2005, 2005, 424-430.	1.3	41
64	VARIABLE BREEDING PHENOLOGY AFFECTS THE EXPOSURE OF AMPHIBIAN EMBRYOS TO ULTRAVIOLET RADIATION and OPTICAL CHARACTERISTICS OF NATURAL WATERS PROTECT AMPHIBIANS FROM UV-B IN THE U.S. PACIFIC NORTHWEST: COMMENT. Ecology, 2004, 85, 1747-1754.	3.2	20
65	Amphibian Decline and Emerging Disease. American Scientist, 2004, 92, 138.	0.1	48
66	Amphibian Breeding and Climate Change: Reply to Corn. Conservation Biology, 2003, 17, 626-627.	4.7	1
67	Amphibian defenses against ultraviolet-B radiation. Evolution & Development, 2003, 5, 89-97.	2.0	116
68	UV-B Induced Skin Darkening in Larval Salamanders Does Not Prevent Sublethal Effects of Exposure on Growth. Copeia, 2002, 2002, 748-754.	1.3	23
69	POPULATION DIFFERENCES IN SENSITIVITY TO UV-B RADIATION FOR LARVAL LONG-TOED SALAMANDERS. Ecology, 2002, 83, 1586-1590.	3.2	36
70	Exposure of red-legged frog embryos to ambient UV-B radiation in the field negatively affects larval growth and development. Oecologia, 2002, 130, 551-554.	2.0	66
71	Amphibian Phenology and Climate Change. Conservation Biology, 2002, 16, 1454-1455.	4.7	25
72	Amphibian Breeding and Climate Change. Conservation Biology, 2001, 15, 1804-1809.	4.7	204

#	Article	IF	CITATIONS
73	Complex causes of amphibian population declines. Nature, 2001, 410, 681-684.	27.8	593
74	INFLUENCE OF ABIOTIC AND BIOTIC FACTORS ON AMPHIBIANS IN EPHEMERAL PONDS WITH SPECIAL REFERENCE TO LONG-TOED SALAMANDERS (AMBYSTOMA MACRODACTYLUM). Israel Journal of Zoology, 2001, 47, 333-346.	0.2	31
75	In Search of the Golden Frog. Marty Crump. Quarterly Review of Biology, 2001, 76, 343-344.	0.1	0
76	Effects of Snake Predation on Aggregation and Metamorphosis of Pacific Treefrog (Hyla regilla) Larvae. Journal of Herpetology, 1999, 33, 504.	0.5	10
77	Effects of Ultraviolet Radiation on Amphibians: Field Experiments. American Zoologist, 1998, 38, 799-812.	0.7	140
78	Antibiotic perturbation of gut bacteria does not significantly alter host responses to ocular disease in a songbird species. PeerJ, 0, 10, e13559.	2.0	0
79	A new duplex qPCR assay for the quantification of honey bee (<i>Apis mellifera</i>) parasites <i>Nosema ceranae</i> and <i>Nosema apis</i> tested with low dose experimental exposure. Journal of Apicultural Research, 0, , 1-12.	1.5	1