Wesley Luc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4077754/publications.pdf

Version: 2024-02-01

		687363	940533	
15	2,789	13	16	
papers	citations	h-index	g-index	
16	16	16	3582	
all docs	docs citations	times ranked	citing authors	
un 4000	acco citations	cimeo funca	oring authors	

#	Article	IF	CITATIONS
1	General Techno-Economic Analysis of CO ₂ Electrolysis Systems. Industrial & Description of Color Engineering Chemistry Research, 2018, 57, 2165-2177.	3.7	928
2	Agâ€"Sn Bimetallic Catalyst with a Coreâ€"Shell Structure for CO ₂ Reduction. Journal of the American Chemical Society, 2017, 139, 1885-1893.	13.7	455
3	High-rate electroreduction of carbon monoxide to multi-carbon products. Nature Catalysis, 2018, 1, 748-755.	34.4	400
4	A Highly Porous Copper Electrocatalyst for Carbon Dioxide Reduction. Advanced Materials, 2018, 30, e1803111.	21.0	356
5	Understanding Surface-Mediated Electrochemical Reactions: CO ₂ Reduction and Beyond. ACS Catalysis, 2018, 8, 8121-8129.	11.2	194
6	Overcoming immiscibility toward bimetallic catalyst library. Science Advances, 2020, 6, eaaz6844.	10.3	105
7	SO ₂ -Induced Selectivity Change in CO ₂ Electroreduction. Journal of the American Chemical Society, 2019, 141, 9902-9909.	13.7	102
8	Synthesis of Nanoporous Metals, Oxides, Carbides, and Sulfides: Beyond Nanocasting. Accounts of Chemical Research, 2016, 49, 1351-1358.	15.6	72
9	Role of Surface Oxophilicity in Copper-Catalyzed Water Dissociation. ACS Catalysis, 2018, 8, 9327-9333.	11.2	46
10	Nanoporous Cu–Al–Co Alloys for Selective Furfural Hydrodeoxygenation to 2-Methylfuran. Industrial & Samp; Engineering Chemistry Research, 2017, 56, 3866-3872.	3.7	34
11	Toward a Practical Solar-Driven CO ₂ Flow Cell Electrolyzer: Design and Optimization. ACS Sustainable Chemistry and Engineering, 2017, 5, 10959-10966.	6.7	32
12	Carbon dioxide splitting using an electro-thermochemical hybrid looping strategy. Energy and Environmental Science, 2018, 11, 2928-2934.	30.8	23
13	Photoelectrochemical Carbon Dioxide Reduction Using a Nanoporous Ag Cathode. ACS Applied Materials & Samp; Interfaces, 2016, 8, 24652-24658.	8.0	22
14	Computation and assessment of solar electrolyzer field performance: comparing coupling strategies. Sustainable Energy and Fuels, 2019, 3, 422-430.	4.9	12
15	Design and Implementation of High Voltage Photovoltaic Electrolysis System for Solar Fuel Production from CO2. MRS Advances, 2017, 2, 3359-3364.	0.9	1