Grzegorz PorÄBA

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/407769/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The <i>μ</i> Dose system: determination of environmental dose rates by combined alpha and beta counting – performance tests and practical experiences. Geochronology, 2022, 4, 1-31.	2.5	6
2	Evaluating the Effect of Hydrofluoric Acid Etching on Quartz Grains using Microscope Image Analysis, Laser Diffraction and Weight Loss Particle Size Estimate. Geochronometria, 2022, 49, 1-8.	0.8	1
3	Combining 137 Cs , 210 Pb and dendrochronology for improved reconstruction of erosion–sedimentation events in a loess gully system (southern Poland). Land Degradation and Development, 2021, 32, 2336-2350.	3.9	3
4	Luminescence Dating Procedures at the Gliwice Luminescence Dating Laboratory. Geochronometria, 2021, 48, 1-15.	0.8	25
5	Bias in 238U decay chain members measured by Î ³ -ray spectrometry due to 222Rn leakage. Applied Radiation and Isotopes, 2020, 156, 108945.	1.5	12
6	Increased dose rate precision in combined α and β counting in the μDose system - a probabilistic approach to data analysis. Radiation Measurements, 2020, 134, 106310.	1.4	13
7	Chronostratigraphy of Late Glacial aeolian activity in SW Poland – A case study from the Niemodlin Plateau. Geochronometria, 2020, 47, 124-137.	0.8	13
8	Deposits of Neolithic water soil erosion in the loess region of the MaÅ,opolska Upland (S Poland) – A case study of the settlement micro-region in Bronocice. Quaternary International, 2019, 502, 45-59.	1.5	12
9	Interpretation of soil erosion in a Polish loess area using OSL, ¹³⁷ Cs, ²¹⁰ Pb _{ex} , dendrochronology and micromorphology – case study: Biedrzykowice site (s Poland). Geochronometria, 2019, 46, 57-78.	0.8	19
10	The impact of Wallachian settlement on relief and alluvia composition in small valleys of the Carpathian Mts. (Czech Republic). Catena, 2018, 160, 10-23.	5.0	16
11	μDose: A compact system for environmental radioactivity and dose rate measurement. Radiation Measurements, 2018, 118, 8-13.	1.4	15
12	Luminescence chronostratigraphy for the loess deposits in ZÅ,ota, Poland. Geochronometria, 2018, 45, 44-55.	0.8	20
13	Optically stimulated luminescence techniques applied to the dating of the fall of meteorites in Morasko. Geochronometria, 2018, 45, 74-81.	0.8	2
14	210 Pb, 137 Cs and 7 Be in the sediments of coastal lakes on the polish coast: Implications for sedimentary processes. Journal of Environmental Radioactivity, 2017, 169-170, 174-185.	1.7	9
15	Reply to the comment by F. Gharbi on "Multiple dating of varved sediments fromÂLake Åazduny, northern Poland: Toward an improved chronology for the lastÂ150 years― Quaternary Geochronology, 2014, 20, 111-113.	1.4	11
16	Influence of pedon history and washing nature on luminescence dating of Holocene colluvium on the example of research on the Polish loess areas. Quaternary International, 2013, 296, 61-67.	1.5	9
17	Multiple dating of varved sediments from Lake Åazduny, northern Poland: Toward an improved chronology for the last 150 years. Quaternary Geochronology, 2013, 15, 98-107.	1.4	56
18	Construction and validation of calendar-year time scale for annually laminated sediments – an example from Lake SzurpiÅ,y (NE Poland). Gff, 2013, 135, 248-257.	1.2	18

Grzegorz Porä™ba

#	Article	IF	CITATIONS
19	SOIL EROSION ASSOCIATED WITH AN UPLAND FARMING SYSTEM UNDER POPULATION PRESSURE IN NORTHEAST INDIA. Land Degradation and Development, 2012, 23, 310-321.	3.9	54
20	Some aspects of age assessment of Holocene loess colluvium: OSL and 137Cs dating of sediment from BiaÅ,a agricultural area, South Poland. Quaternary International, 2011, 240, 44-51.	1.5	23
21	Estimation of soil erosion on cultivated fields on the hilly Meghalaya Plateau, North-East India. Geochronometria, 2011, 38, 77-84.	0.8	11
22	Combined IRSL/OSL Dating on Fine Grains from Lake Baikal Sediments. Geochronometria, 2008, 31, 39-43.	0.8	6
23	Influence of the Parameters of Models used to Calculate Soil Erosion Based on ¹³⁷ Cs Tracer. Geochronometria, 2008, 32, 21-27.	0.8	17
24	Determination of the Initial 137Cs Fallout on the Areas Contaminated by Chernobyl Fallout. Geochronometria, 2007, 26, 35-38.	0.8	17
25	The Basis of the Study of the Age of the Holocene Diluvium on Loess Areas of Polish Highlands. Geochronometria, 2007, 28, 61-66.	0.8	14
26	Measurement of137Cs in cultivated soils from two loess areas in Poland. Isotopes in Environmental and Health Studies, 2006, 42, 181-188.	1.0	1