
Fumihiko Tanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/407745/publications.pdf Version: 2024-02-01

Ειιμικό Τλυλκλ

#	Article	IF	CITATIONS
1	Thermoreversible Gelation of Associating Polymers in Hydrogen-Bonding Mixed Solvents. Langmuir, 2022, 38, 5098-5110.	1.6	3
2	Thermoreversible Gelation with Two-Component Mixed Cross-Link Junctions of Variable Multiplicity in Ternary Polymer Solutions. Gels, 2021, 7, 89.	2.1	6
3	Thermoreversible gelation with ion-binding cross-links of variable multiplicity. Journal of Chemical Physics, 2019, 150, 174904.	1.2	4
4	Relationship between the phase diagram and hysteresis in demixing and remixing for atactic and meso-rich Poly(N-isopropylacrylamide)s in water. Polymer, 2019, 161, 92-100.	1.8	11
5	Phase Behavior of Co-Nonsolvent Systems: Poly(N-isopropylacrylamide) in Mixed Solvents of Water and Methanol. Langmuir, 2018, 34, 3003-3009.	1.6	22
6	Critical Shear Rate for Gelation in Aqueous Solutions of Associating Polymers under Shear Flows. Journal of the Physical Society of Japan, 2018, 87, 074801.	0.7	1
7	Rate effect in the fracture of rubbers and chemically cross-linked gels. Journal of Chemical Physics, 2014, 141, 134904.	1.2	3
8	LCST phase separation and thermoreversible gelation in aqueous solutions of stereo-controlled poly(N-isopropylacrylamide)s. Reactive and Functional Polymers, 2013, 73, 894-897.	2.0	15
9	New insights into the effects of molecular weight and end group on the temperature-induced phase transition of poly(N-isopropylacrylamide) in water. Science China Chemistry, 2013, 56, 56-64.	4.2	51
10	Temperature dependent phase behavior of PNIPAM microgels in mixed water/methanol solvents. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1100-1111.	2.4	87
11	Nonlinear depression of the lower critical solution temperatures in aqueous solutions of thermoâ€sensitive random copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1112-1123.	2.4	8
12	Transient Networks of Telechelic Thermo-Sensitive Polymers with Main-Chain Conformational Transition - From Maxwell to Burgers Model Nihon Reoroji Gakkaishi, 2013, 41, 179-186.	0.2	0
13	Structure and Dynamics of Transient Gels. Progress of Theoretical Physics Supplement, 2013, 126, 257-260.	0.2	0
14	Topological classification of Brownian orbits. Journal of Chemical Physics, 2012, 137, 104907.	1.2	1
15	Reentrant volume phase transition of cross-linked poly(N-isopropylacrylamide) gels in mixed solvents of water/methanol. Soft Matter, 2012, 8, 3010.	1.2	29
16	Rheological properties of physical gel formed by hydrophobically modified urethane ethoxylate (HEUR) associative polymers in methanol–water mixtures. Rheologica Acta, 2012, 51, 89-96.	1.1	12
17	Preferential Adsorption and Co-nonsolvency of Thermoresponsive Polymers in Mixed Solvents of Water/Methanol. Macromolecules, 2011, 44, 2978-2989.	2.2	115
18	Hydration, phase separation and nonlinear rheology of temperature-sensitive water-soluble polymers. Journal of Physics Condensed Matter, 2011, 23, 284105.	0.7	21

#	Article	IF	CITATIONS
19	Statistical properties of polymer chains. , 2011, , 1-45.		Ο
20	Hydration and phase separation of temperature-sensitive water-soluble polymers. Chinese Journal of Polymer Science (English Edition), 2011, 29, 13-21.	2.0	21
21	Theoretical Predictions on Normal Stresses under Shear Flow in Transient Networks of Telechelic Associating Polymers. Macromolecules, 2010, 43, 3052-3060.	2.2	35
22	Transient Network Theory of Wormlike Micelles: Topological Force Accelerates Relaxation. Langmuir, 2010, 26, 5374-5381.	1.6	7
23	Cooperative Hydration Induces Discontinuous Volume Phase Transition of Cross-Linked Poly(<i>N</i> -isopropylacrylamide) Gels in Water. Macromolecules, 2010, 43, 5103-5113.	2.2	61
24	Theoretical Modelling of Hierarchically Associated Structures in Hydrophobically Modified PNIPAM Aqueous Solutions on the Basis of a Neutron Scattering Study. Macromolecular Symposia, 2010, 291-292, 177-185.	0.4	4
25	Competitive Hydrogen Bonds and Cononsolvency of Poly(N-isopropylacrylamide)s in Mixed Solvents of Water/Methanol. , 2009, , 1-7.		8
26	Hydration and Dynamic Behavior of a Cyclic Poly(<i>N</i> -isopropylacrylamide) in Aqueous Solution: Effects of the Polymer Chain Topology. Macromolecules, 2009, 42, 1400-1403.	2.2	83
27	Stress Buildup under Start-Up Shear Flows in Self-Assembled Transient Networks of Telechelic Associating Polymers. Langmuir, 2009, 25, 8626-8638.	1.6	40
28	Competitive hydrogen-bonding in polymer solutions with mixed solvents. Soft Matter, 2009, 5, 304-307.	1.2	20
29	Temperature- and Tension-Induced Coilâ^'Globule Transition of Poly(<i>N</i> -isopropylacrylamide) Chains in Water and Mixed Solvent of Water/Methanol. Macromolecules, 2009, 42, 1321-1330.	2.2	102
30	Time-Dependent Flow Properties of Transient Hydrogels with Temporal Network Junctions. , 2009, , 31-37.		0
31	Temperature Response of Self-Assembled Micelles of Telechelic Hydrophobically Modified Poly(2-alkyl-2-oxazoline)s in Water. Macromolecules, 2009, 42, 2204-2214.	2.2	86
32	Heat-Induced Phase Transition and Crystallization of Hydrophobically End-Capped Poly(2-isopropyl-2-oxazoline)s in Water. Macromolecules, 2009, 42, 5818-5828.	2.2	76
33	Stress Growth in Transient Polymer Networks under Startup Shear Flow. , 2009, , 39-45.		4
34	Temperature-Responsive Polymers in Mixed Solvents: Competitive Hydrogen Bonds Cause Cononsolvency. Physical Review Letters, 2008, 101, 028302.	2.9	223
35	Theoretical Modeling of Associated Structures in Aqueous Solutions of Hydrophobically Modified Telechelic PNIPAM Based on a Neutron Scattering Study. Macromolecules, 2008, 41, 9413-9422.	2.2	79
36	é«~å^†å ŧë· çµ±è [·] åŠ›å¦ ãƒ«ãƒ¼ãƒ—ãƒ»ãƒ¬ãƒ—ãƒªã,«ãƒ»ã,«ã,¹ã,±ãƒ¼ãƒ‰. Kobunshi, 2008, 57, 76-80.	0.0	0

#	Article	IF	CITATIONS
37	Temperature-Induced Phase Transition of Well-Defined Cyclic Poly(<i>N</i> -isopropylacrylamide)s in Aqueous Solution. Macromolecules, 2007, 40, 7069-7071.	2.2	302
38	Mechanically Induced Helicity in Chiral Stimuli-Responsive Gels. Macromolecules, 2007, 40, 4703-4709.	2.2	0
39	Impact of End-Group Association and Main-Chain Hydration on the Thermosensitive Properties of Hydrophobically Modified Telechelic Poly(N-isopropylacrylamides) in Water. Macromolecules, 2006, 39, 341-348.	2.2	284
40	Pressure-Controlled Thermoreversible Gelation. Macromolecules, 2006, 39, 8153-8162.	2.2	2
41	Unified model of association-induced lower critical solution temperature phase separation and its application to solutions of telechelic poly(ethylene oxide) and of telechelic poly(N-isopropylacrylamide) in water. Journal of Chemical Physics, 2006, 125, 244902.	1.2	17
42	Temperature-Dependent Properties of Telechelic Hydrophobically Modified Poly(N-isopropylacrylamides) in Water:Â Evidence from Light Scattering and Fluorescence Spectroscopy for the Formation of Stable Mesoglobules at Elevated Temperatures. Macromolecules, 2006, 39, 3048-3055.	2.2	128
43	New Cascade Theory of Branched Polymers and Its Application to Size Exclusion Chromatography. Macromolecules, 2006, 39, 6643-6652.	2.2	11
44	Nonaffine Transient Network Theory of Associating Polymer Solutions. Macromolecules, 2006, 39, 5913-5920.	2.2	32
45	Thermoreversible gelation is a Bose-Einstein condensation. Physical Review E, 2006, 73, 061405.	0.8	9
46	Theory of Molecular Association and Thermoreversible Gelation. , 2006, , 17-77.		11
47	Solvent Effect on Junction Size in Syndiotactic Polystyrene Physical Gel. Polymer Journal, 2005, 37, 294-298.	1.3	12
48	Theory of Shear-Thickening in Transient Networks of Associating Polymers. Macromolecular Rapid Communications, 2005, 26, 701-706.	2.0	55
49	Thermoreversible gelation with hydrogen-bonded zipper-like crosslink junctions. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 3331-3336.	2.4	1
50	Optical Resolution of Chiral Molecules by Stretching Hydrogen-Bonding Helical Polymers. Macromolecules, 2005, 38, 561-570.	2.2	8
51	Cooperative Hydration, Chain Collapse, and Flat LCST Behavior in Aqueous Poly(N-isopropylacrylamide) Solutions. Macromolecules, 2005, 38, 4465-4471.	2.2	374
52	Theory of Transient Polymer Networks Crosslinked by Two Different Associative Groups. Nihon Reoroji Gakkaishi, 2004, 32, 285-293.	0.2	1
53	Thermoreversible Gelation driven by Coil-to-Helix Transition of Polymers. AIP Conference Proceedings, 2004, , .	0.3	0
54	Effects of added surfactants on thermoreversible gelation of associating polymer solutions. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 733-751.	2.4	7

ΓUMIHIKOTANAKA

#	Article	IF	CITATIONS
55	Thermoreversible gelation strongly coupled to coil-to-helix transition of polymers. Colloids and Surfaces B: Biointerfaces, 2004, 38, 111-114.	2.5	6
56	Theoretical Study of Helix Induction on a Polymer Chain by Hydrogen-Bonding Chiral Molecules. Macromolecules, 2004, 37, 605-613.	2.2	22
57	Thermoreversible gelation strongly coupled to polymer conformational transition. Macromolecular Symposia, 2004, 207, 125-130.	0.4	1
58	Gel formation with multiple interunit junctions. II?mixture of different functional molecules. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2413-2421.	2.4	13
59	Gel formation with multiple interunit junctions. I?Molecules carrying different functional groups. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2405-2412.	2.4	12
60	Thermoreversible Gelation Driven by Coil-to-Helix Transition of Polymers. Macromolecules, 2003, 36, 5392-5405.	2.2	48
61	Theoretical Study of Molecular Association and Thermoreversible Gelation in Polymers. Polymer Journal, 2002, 34, 479-509.	1.3	70
62	Advanced Fluid Information. Flows in Polymer Networks JSME International Journal Series B, 2002, 45, 123-128.	0.3	2
63	Theoretical Study of Hydrogen-Bonded Supramolecular Liquid Crystals. Macromolecules, 2002, 35, 7460-7472.	2.2	36
64	Cascade Theory of Substitution Effects in Nonequilibrium Polycondensation Systems. Macromolecules, 2002, 35, 5649-5656.	2.2	12
65	Intramolecular micelles and intermolecular crosslinks in thermoreversible gels of associating polymers. Journal of Non-Crystalline Solids, 2002, 307-310, 688-697.	1.5	18
66	Theoretical and Computational Study of Thermoreversible Gelation. Bulletin of the Chemical Society of Japan, 2001, 74, 201-215.	2.0	14
67	Thermoreversible Gelation Strongly Coupled to Polymer Conformational Transition. Macromolecules, 2000, 33, 4249-4263.	2.2	46
68	Thermoreversible Gelation with Two-Component Networks. Macromolecules, 1999, 32, 1271-1283.	2.2	32
69	Polymer-surfactant interaction in thermoreversible gels. , 1999, , 81-89.		1
70	Thermoreversible gelation of associating polymers. Physica A: Statistical Mechanics and Its Applications, 1998, 257, 245-255.	1.2	31
71	Polymerâ^'Surfactant Interaction in Thermoreversible Gels. Macromolecules, 1998, 31, 384-393.	2.2	65
72	Theoretical Study of the Postgel Regime in Thermoreversible Gelation. Macromolecules, 1997, 30, 3900-3909.	2.2	55

#	Article	IF	CITATIONS
73	Microphase Formation in Mixtures of Associating Polymers. Macromolecules, 1997, 30, 1836-1844.	2.2	48
74	Elastically Effective Chains in Transient Gels with Multiple Junctions. Macromolecules, 1996, 29, 7571-7580.	2.2	59
75	Junction Multiplicity in Thermoreversible Gelation. Macromolecules, 1996, 29, 3625-3628.	2.2	48
76	Phase formation of associating polymers: gelation, phase separation and microphase formation. Advances in Colloid and Interface Science, 1996, 63, 23-40.	7.0	36
77	Thermoreversible gelation of hydrated polymers. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 2663.	1.7	39
78	Phase formation of two-component physical gels. Physica A: Statistical Mechanics and Its Applications, 1994, 204, 660-672.	1.2	14
79	Thermoreversible Gelation with Junctions of Variable Multiplicity. Macromolecules, 1994, 27, 3943-3954.	2.2	163
80	Theoretical Prediction of Complex Polymer Phase Diagram Kobunshi, 1994, 43, 421-425.	0.0	1
81	Thermoreversible gelation with junctions of variable multiplicity. Macromolecular Symposia, 1994, 81, 171-175.	0.4	2
82	Possible phase diagrams for reversibly interpenetrating polymer networks. Physical Review Letters, 1992, 68, 3188-3191.	2.9	9
83	Theory of microphase formation in reversibly associating block copolymer blends. Macromolecules, 1991, 24, 5582-5589.	2.2	55
84	Theory of solvationâ€induced reentrant coil–globule transition of an isolated polymer chain. Journal of Chemical Physics, 1991, 94, 781-786.	1.2	47
85	Thermodynamic theory of network-forming polymer solutions. 2. Equilibrium gelation by conterminous crosslinking. Macromolecules, 1990, 23, 3790-3795.	2.2	46
86	Thermodynamic theory of network-forming polymer solutions. 1. Macromolecules, 1990, 23, 3784-3789.	2.2	68
87	Theory of solvation-induced reentrant phase separation in polymer solutions. Physical Review Letters, 1990, 65, 341-344.	2.9	202
88	Tricriticality in thermoreversible gels. Physical Review Letters, 1989, 62, 2759-2762.	2.9	64
89	Theory of thermoreversible gelation. Macromolecules, 1989, 22, 1988-1994.	2.2	82
90	Chain conformation in ternary polymer solutions. Macromolecules, 1988, 21, 1041-1046.	2.2	13

#	Article	IF	CITATIONS
91	Effect of chain association on the viscosity of dilute ionomer solutions. Macromolecules, 1988, 21, 2189-2195.	2.2	10
92	Statistical-Mechanical Analysis of the First-Order Wetting Transition in Polymer Solutions. Journal of the Physical Society of Japan, 1987, 56, 3961-3969.	0.7	1
93	Osmotic pressure of ringâ€polymer solutions. Journal of Chemical Physics, 1987, 87, 4201-4206.	1.2	41
94	Study on the polymer-induced coil-globule transition. Intramacromolecular self-quenching rates of anthryl groups attached to a polymer side chain. European Polymer Journal, 1987, 23, 323-326.	2.6	0
95	Internal condensation of a polymer molecule induced by saturating bonds. Journal of Chemical Physics, 1986, 84, 5925-5930.	1.2	10
96	The polymerâ€induced coil–globule transition. Journal of Chemical Physics, 1985, 82, 2466-2471.	1.2	9
97	Theory of the second virial coefficients in polymeric solutions below the theta temperature. Journal of Chemical Physics, 1985, 82, 4707-4714.	1.2	24
98	Elastic theory of supercoiled DNA. Journal of Chemical Physics, 1985, 83, 6017-6026.	1.2	70
99	Elastic Response of Entangled Polymers. Journal of the Physical Society of Japan, 1984, 53, 2205-2214.	0.7	9
100	Statistical Mechanics of Sterically Interacting Ring Polymers. Journal of the Physical Society of Japan, 1984, 53, 1652-1659.	0.7	0
101	Concentrationâ€dependent collapse of a large polymer in a solution of incompatible polymers. Journal of Chemical Physics, 1983, 78, 2788-2794.	1.2	19
102	On the Critical Behavior of the Two-Dimensional Heisenberg-Ising Model. Progress of Theoretical Physics, 1973, 50, 1085-1086.	2.0	4
103	Thermoreversible gelation. , 0, , 222-246.		0
104	Thermoreversible Gelation Interfering with Phase Separation in Multicomponent Mixtures of Associating Polymers. Macromolecules, 0, , .	2.2	2