Roland Winter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4077379/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amyloidogenic Self-Assembly of Insulin Aggregates Probed by High Resolution Atomic Force Microscopy. Biophysical Journal, 2005, 88, 1344-1353.	0.2	261
2	Structural characterization of the pressure-denatured state and unfolding/refolding kinetics of staphylococcal nuclease by synchrotron small-angle X-ray scattering and Fourier-transform infrared spectroscopy 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1998, 275, 389-402.	2.0	259
3	Origins of life and biochemistry under high-pressure conditions. Chemical Society Reviews, 2006, 35, 858.	18.7	231
4	Effect of pressure on membranes. Soft Matter, 2009, 5, 3157.	1.2	201
5	Exploring the Temperatureâ^'Pressure Phase Diagram of Staphylococcal Nucleaseâ€. Biochemistry, 1999, 38, 4157-4164.	1.2	193
6	Differences between the Pressure- and Temperature-Induced Denaturation and Aggregation of β-Lactoglobulin A, B, and AB Monitored by FT-IR Spectroscopy and Small-Angle X-ray Scattering. Biochemistry, 1999, 38, 6512-6519.	1.2	184
7	Protein Encapsulation in Mesoporous Silicate:Â The Effects of Confinement on Protein Stability, Hydration, and Volumetric Properties. Journal of the American Chemical Society, 2004, 126, 12224-12225.	6.6	181
8	Mechanism of Islet Amyloid Polypeptide Fibrillation at Lipid Interfaces Studied by Infrared Reflection Absorption Spectroscopy. Biophysical Journal, 2007, 93, 3132-3141.	0.2	175
9	Aggregation of Bovine Insulin Probed by DSC/PPC Calorimetry and FTIR Spectroscopy. Biochemistry, 2003, 42, 11347-11355.	1.2	168
10	Synchrotron X-ray and neutron small-angle scattering of lyotropic lipid mesophases, model biomembranes and proteins in solution at high pressure. BBA - Proteins and Proteomics, 2002, 1595, 160-184.	2.1	152
11	Effects of <i>in vivo</i> conditions on amyloid aggregation. Chemical Society Reviews, 2019, 48, 3946-3996.	18.7	148
12	Membrane-Mediated Induction and Sorting of K-Ras Microdomain Signaling Platforms. Journal of the American Chemical Society, 2011, 133, 880-887.	6.6	147
13	A SANS Study of High Pressure Phase Transitions in Model Biomembranes. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1989, 93, 708-717.	0.9	134
14	The static structure factor of cesium over the whole liquid range up to the critical point. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1987, 91, 1327-1330.	0.9	132
15	Volume, expansivity and isothermal compressibility changes associated with temperature and pressure unfolding of staphylococcal nuclease 1 1Edited by C. R. Mathews. Journal of Molecular Biology, 2001, 307, 1091-1102.	2.0	128
16	Temperature- and pressure-dependent phase behavior of monoacylglycerides monoolein and monoelaidin. Biophysical Journal, 1995, 68, 1423-1429.	0.2	126
17	Insulin forms amyloid in a strain-dependent manner: An FT-IR spectroscopic study. Protein Science, 2004, 13, 1927-1932.	3.1	125
18	Visualizing Association of N-Ras in Lipid Microdomains:Â Influence of Domain Structure and Interfacial Adsorption, Journal of the American Chemical Society, 2006, 128, 192-201	6.6	125

#	Article	IF	CITATIONS
19	Inhibiting Islet Amyloid Polypeptide Fibril Formation by the Red Wine Compound Resveratrol. ChemBioChem, 2009, 10, 445-449.	1.3	125
20	Differential Properties of the Sterols Cholesterol, Ergosterol, β-Sitosterol,trans-7-Dehydrocholesterol, Stigmasterol and Lanosterol on DPPC Bilayer Order. Journal of Physical Chemistry B, 2003, 107, 10658-10664.	1.2	116
21	Effect of hydrostatic pressure on water penetration and rotational dynamics in phospholipid-cholesterol bilayers. Biophysical Journal, 1997, 72, 1264-1277.	0.2	115
22	Cold―and Pressureâ€Induced Dissociation of Protein Aggregates and Amyloid Fibrils. Angewandte Chemie - International Edition, 2008, 47, 6518-6521.	7.2	115
23	Pressure perturbation calorimetric studies of the solvation properties and the thermal unfolding of proteins in solution—experiments and theoretical interpretation. Physical Chemistry Chemical Physics, 2006, 8, 1249.	1.3	113
24	Ethanol-Perturbed Amyloidogenic Self-Assembly of Insulin:  Looking for Origins of Amyloid Strains. Biochemistry, 2005, 44, 8948-8958.	1.2	111
25	Quantum Cluster Equilibrium Theory of Liquids:Â Temperature Dependence of Hydrogen Bonding in LiquidN-Methylacetamide Studied by IR Spectra. Journal of Physical Chemistry B, 1998, 102, 9312-9318.	1.2	110
26	On the Temperature-Pressure Free-Energy Landscape of Proteins. ChemPhysChem, 2003, 4, 359-365.	1.0	110
27	Influence of the Lipidation Motif on the Partitioning and Association of N-Ras in Model Membrane Subdomains. Journal of the American Chemical Society, 2009, 131, 1557-1564.	6.6	108
28	High-Pressure Biochemistry and Biophysics. Reviews in Mineralogy and Geochemistry, 2013, 75, 607-648.	2.2	108
29	Solvation-assisted Pressure Tuning of Insulin Fibrillation: From Novel Aggregation Pathways to Biotechnological Applications. Journal of Molecular Biology, 2006, 356, 497-509.	2.0	106
30	Elucidating the Mechanism of Lipid Membrane-Induced IAPP Fibrillogenesis and Its Inhibition by the Red Wine Compound Resveratrol: A Synchrotron X-ray Reflectivity Study. Journal of the American Chemical Society, 2009, 131, 9516-9521.	6.6	106
31	Revealing conformational substates of lipidated N-Ras protein by pressure modulation. Proceedings of the United States of America, 2012, 109, 460-465.	3.3	106
32	Effects of Pressure-Induced Membrane Phase Transitions on Inactivation of HorA, an ATP-Dependent Multidrug Resistance Transporter, in Lactobacillus plantarum. Applied and Environmental Microbiology, 2002, 68, 1088-1095.	1.4	105
33	Effect of Osmolytes on Pressureâ€Induced Unfolding of Proteins: A Highâ€Pressure SAXS Study. ChemPhysChem, 2008, 9, 2809-2815.	1.0	104
34	Smallâ€Molecule Inhibitors of Islet Amyloid Polypeptide Fibril Formation. Angewandte Chemie - International Edition, 2008, 47, 4679-4682.	7.2	103
35	Characterization of the Pressure-induced Intermediate and Unfolded State of Red-shifted Green Fluorescent Protein—A Static and Kinetic FTIR, UV/VIS and Fluorescence Spectroscopy Study. Journal of Molecular Biology, 2003, 330, 1153-1164.	2.0	101
36	Formation of Spanning Water Networks on Protein Surfaces via 2D Percolation Transition. Journal of Physical Chemistry B, 2005, 109, 1988-1998.	1.2	99

#	Article	IF	CITATIONS
37	Dynamics of Structural Transformations between Lamellar and Inverse Bicontinuous Cubic Lyotropic Phases. Physical Review Letters, 2006, 96, 108102.	2.9	99
38	Pressure-Jump Small-Angle X-Ray Scattering Detected Kinetics of Staphylococcal Nuclease Folding. Biophysical Journal, 2001, 80, 1518-1523.	0.2	98
39	Temperature, Hydrostatic Pressure, and Osmolyte Effects on Liquid–Liquid Phase Separation in Protein Condensates: Physical Chemistry and Biological Implications. Chemistry - A European Journal, 2019, 25, 13049-13069.	1.7	96
40	Solvational Tuning of the Unfolding, Aggregation and Amyloidogenesis of Insulin. Journal of Molecular Biology, 2005, 351, 879-894.	2.0	93
41	Inverse Bicontinuous Cubic Phases in 2:1 Fatty Acid/Phosphatidylcholine Mixtures. The Effects of Chain Length, Hydration, and Temperature. Journal of Physical Chemistry B, 1998, 102, 7251-7261.	1.2	92
42	Pressure-Induced Unfolding/Refolding of Ribonuclease A:Â Static and Kinetic Fourier Transform Infrared Spectroscopy Studyâ€. Biochemistry, 2000, 39, 1862-1869.	1.2	91
43	Effect of temperature on the conformation of lysozyme adsorbed to silica particles. Physical Chemistry Chemical Physics, 2001, 3, 235-239.	1.3	91
44	Exploring the temperature–pressure configurational landscape of biomolecules: from lipid membranes to proteins. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2005, 363, 537-563.	1.6	91
45	Temperature- and Pressure-Induced Unfolding and Refolding of Ubiquitin:Â A Static and Kinetic Fourier Transform Infrared Spectroscopy Studyâ€. Biochemistry, 2002, 41, 2396-2401.	1.2	90
46	Interplay between Hydrogen Bonding and Macromolecular Architecture Leading to Unusual Phase Behavior in Thermosensitive Microgels. Angewandte Chemie - International Edition, 2008, 47, 338-341.	7.2	90
47	Hydration and Packing Effects on Prion Folding and β-Sheet Conversion. Journal of Biological Chemistry, 2004, 279, 32354-32359.	1.6	89
48	Pressure—A Gateway to Fundamental Insights into Protein Solvation, Dynamics, and Function. ChemPhysChem, 2015, 16, 3555-3571.	1.0	87
49	Pressure-jump studies of the folding/unfolding of trp repressor. Journal of Molecular Biology, 1999, 288, 461-475.	2.0	85
50	Effect of temperature, pressure and lipid acyl chain length on the structure and phase behaviour of phospholipid–gramicidin bilayers. Physical Chemistry Chemical Physics, 2000, 2, 4545-4551.	1.3	82
51	Towards an Understanding of the Temperature/ Pressure Configurational and Free-Energy Landscape of Biomolecules. Journal of Non-Equilibrium Thermodynamics, 2007, 32, .	2.4	82
52	Cytotoxicity of Insulin within its Self-assembly and Amyloidogenic Pathways. Journal of Molecular Biology, 2007, 370, 372-384.	2.0	82
53	Crowders and Cosolvents—Major Contributors to the Cellular Milieu and Efficient Means to Counteract Environmental Stresses. ChemPhysChem, 2017, 18, 2951-2972.	1.0	82
54	The effect of high external pressure on DPPC-cholesterol multilamellar vesicles: a pressure-tuning Fourier transform infrared spectroscopy study. Biochimica Et Biophysica Acta - Biomembranes, 1996, 1279, 5-16.	1.4	81

#	Article	IF	CITATIONS
55	Characterization of the Temperature- and Pressure-Induced Inverse and Reentrant Transition of the Minimum Elastin-Like Polypeptide GVG(VPGVG) by DSC, PPC, CD, and FT-IR Spectroscopy. Biophysical Journal, 2004, 86, 1385-1392.	0.2	81
56	Exploring the Piezophilic Behavior of Natural Cosolvent Mixtures. Angewandte Chemie - International Edition, 2011, 50, 11413-11416.	7.2	79
57	Design principles for high–pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures. Journal of Chemical Physics, 2016, 144, 144104.	1.2	79
58	High Pressure Promotes Circularly Shaped Insulin Amyloid. Journal of Molecular Biology, 2004, 338, 203-206.	2.0	78
59	Molecular Dynamics Simulations of Staphylococcal Nuclease:Â Properties of Water at the Protein Surface. Journal of Physical Chemistry B, 2004, 108, 15928-15937.	1.2	77
60	Interaction of the anticancer agent Taxol? (paclitaxel) with phospholipid bilayers. , 1999, 46, 141-149.		76
61	Amyloidogenic Propensities and Conformational Properties of ProIAPP and IAPP in the Presence of Lipid Bilayer Membranes. Journal of Molecular Biology, 2009, 389, 907-920.	2.0	75
62	Interaction of hIAPP with Model Raft Membranes and Pancreatic β ells: Cytotoxicity of hIAPP Oligomers. ChemBioChem, 2010, 11, 1280-1290.	1.3	75
63	Synthesis of the Rheb and Kâ€Ras4B GTPases. Angewandte Chemie - International Edition, 2010, 49, 6090-6095.	7.2	73
64	RNA Hairpin Folding in the Crowded Cell. Angewandte Chemie - International Edition, 2016, 55, 3224-3228.	7.2	73
65	Kinetics and Mechanism of the Lamellar to Gyroid Inverse Bicontinuous Cubic Phase Transition. Langmuir, 2002, 18, 7384-7392.	1.6	72
66	The Diastereomeric Assembly of Polylysine Is the Low-Volume Pathway for Preferential Formation of β-Sheet Aggregates. Journal of the American Chemical Society, 2004, 126, 3762-3768.	6.6	72
67	Crossâ€Amyloid Interaction of Aβ and IAPP at Lipid Membranes. Angewandte Chemie - International Edition, 2012, 51, 679-683.	7.2	71
68	A molecular tweezer antagonizes seminal amyloids and HIV infection. ELife, 2015, 4, .	2.8	71
69	Modeling the Phase Behavior of the Inverse Hexagonal and Inverse Bicontinuous Cubic Phases in 2:1 Fatty Acid/Phosphatidylcholine Mixtures. Journal of Physical Chemistry B, 1998, 102, 7262-7271.	1.2	70
70	High pressure-jump apparatus for kinetic studies of protein folding reactions using the small-angle synchrotron x-ray scattering technique. Review of Scientific Instruments, 2000, 71, 3895.	0.6	70
71	Kinetics and mechanism of the interconversion of inverse bicontinuous cubic mesophases. Physical Review E, 2005, 72, 011502.	0.8	70
72	Effects of Chaotropic and Kosmotropic Cosolvents on the Pressure-Induced Unfolding and Denaturation of Proteins: An FT-IR Study on Staphylococcal Nucleaseâ€. Biochemistry, 2004, 43, 3336-3345.	1.2	69

#	Article	IF	CITATIONS
73	Temperature and pressure effects on structural and conformational properties of POPC/SM/cholesterol model raft mixtures—a FT-IR, SAXS, DSC, PPC and Laurdan fluorescence spectroscopy study. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 248-258.	1.4	67
74	The Lipid Modifications of Ras that Sense Membrane Environments and Induce Local Enrichment. Angewandte Chemie - International Edition, 2009, 48, 8784-8787.	7.2	67
75	Suppression of IAPP fibrillation at anionic lipid membranes via IAPP-derived amyloid inhibitors and insulin. Biophysical Chemistry, 2010, 150, 73-79.	1.5	67
76	Properties of Spanning Water Networks at Protein Surfaces. Journal of Physical Chemistry B, 2005, 109, 10995-11005.	1.2	65
77	The role of C-domain orientation and nucleotide state on the Ras isoform-specific membrane interaction. European Biophysics Journal, 2012, 41, 801-813.	1.2	64
78	Folding and Unfolding of an Elastinlike Oligopeptide: "Inverse Temperature Transition,―Reentrance, and Hydrogen-Bond Dynamics. Physical Review Letters, 2004, 92, 148101.	2.9	63
79	Copolymer Microgels from Mono- and Disubstituted Acrylamides: Phase Behavior and Hydrogen Bonds. Macromolecules, 2008, 41, 6830-6836.	2.2	63
80	Effects of hydrostatic pressure on lipid and surfactant phases. Current Opinion in Colloid and Interface Science, 2001, 6, 303-312.	3.4	62
81	The small-angle and wide-angle X-ray scattering set-up at beamline BL9 of DELTA. Journal of Synchrotron Radiation, 2007, 14, 244-251.	1.0	61
82	Effect of Cholesterol and Ergosterol on the Compressibility and Volume Fluctuations of Phospholipid-Sterol Bilayers in the Critical Point Region: A Molecular Acoustic and Calorimetric Study. Biophysical Journal, 2008, 94, 3538-3548.	0.2	61
83	Fluorescence microscopy studies on islet amyloid polypeptide fibrillation at heterogeneous and cellular membrane interfaces and its inhibition by resveratrol. FEBS Letters, 2009, 583, 1439-1445.	1.3	60
84	Nonlinear Pressure Dependence of the Interaction Potential of Dense Protein Solutions. Physical Review Letters, 2011, 106, 178102.	2.9	60
85	Interrogating the Structural Dynamics and Energetics of Biomolecular Systems with Pressure Modulation. Annual Review of Biophysics, 2019, 48, 441-463.	4.5	60
86	Macromolecular Crowding as a Suppressor of Human IAPP Fibril Formation and Cytotoxicity. PLoS ONE, 2013, 8, e69652.	1.1	59
87	Modulation of human IAPP fibrillation: cosolutes, crowders and chaperones. Physical Chemistry Chemical Physics, 2015, 17, 8338-8348.	1.3	59
88	Combined pressure and cosolvent effects on enzyme activity – a high-pressure stopped-flow kinetic study on α-chymotrypsin. Physical Chemistry Chemical Physics, 2015, 17, 23273-23278.	1.3	59
89	The cholesterol transfer protein GRAMD1A regulates autophagosome biogenesis. Nature Chemical Biology, 2019, 15, 710-720.	3.9	59
90	Pressure-Sensitive and Osmolyte-Modulated Liquid–Liquid Phase Separation of Eye-Lens γ-Crystallins. Journal of the American Chemical Society, 2019, 141, 7347-7354.	6.6	59

#	Article	IF	CITATIONS
91	Pressure effects on the structure of lyotropic lipid mesophases and model biomembrane systems. Zeitschrift Fur Kristallographie - Crystalline Materials, 2000, 215, 454-474.	0.4	58
92	Percolation Transition of Hydration Water: From Planar Hydrophilic Surfaces to Proteins. Physical Review Letters, 2005, 95, 247802.	2.9	58
93	The Amino-Terminal PrP Domain Is Crucial to Modulate Prion Misfolding and Aggregation. Biophysical Journal, 2005, 89, 2667-2676.	0.2	57
94	Kinetics of Lamellar-to-Cubic and Intercubic Phase Transitions of Pure and Cytochrome c Containing Monoolein Dispersions Monitored by Time-Resolved Small-Angle X-ray Diffraction. Langmuir, 2005, 21, 3559-3571.	1.6	57
95	A Pressure-Jump Time-Resolved X-ray Diffraction Study of Cubicâ^'Cubic Transition Kinetics in Monoolein. Langmuir, 2008, 24, 2331-2340.	1.6	57
96	The Effect of Aβ on IAPP Aggregation in the Presence of an Isolated β-Cell Membrane. Journal of Molecular Biology, 2012, 421, 348-363.	2.0	57
97	Effect of high pressure on the structure of dipalmitoylphosphatidylcholine bilayer membranes: a synchrotron-X-ray diffraction and FT-IR spectroscopy study using the diamond anvil technique. Chemistry and Physics of Lipids, 1998, 91, 135-144.	1.5	56
98	Partitioning of Dual-Lipidated Peptides into Membrane Microdomains:Â Lipid Sorting vs Peptide Aggregation. Journal of the American Chemical Society, 2004, 126, 7496-7503.	6.6	56
99	Effects of Specific versus Nonspecific Ionic Interactions on the Structure and Lateral Organization of Lipopolysaccharides. Biophysical Journal, 2011, 100, 2169-2177.	0.2	56
100	Towards a Quantitative Understanding of Protein Hydration and Volumetric Properties. ChemPhysChem, 2008, 9, 2715-2721.	1.0	55
101	NMR Spectroscopic Investigation of Early Events in IAPP Amyloid Fibril Formation. ChemBioChem, 2009, 10, 1769-1772.	1.3	55
102	The structural properties of liquid sulphur. Journal of Physics Condensed Matter, 1990, 2, 8427-8437.	0.7	54
103	Nonspecific Prion Protein–Nucleic Acid Interactions Lead to Different Aggregates and Cytotoxic Species. Biochemistry, 2012, 51, 5402-5413.	1.2	54
104	Hydrostatic Pressure Increases the Catalytic Activity of Amyloid Fibril Enzymes. Angewandte Chemie - International Edition, 2016, 55, 12412-12416.	7.2	54
105	On the Norbornyl Cation Problem. Journal of the American Chemical Society, 1963, 85, 169-173.	6.6	53
106	Inverse bicontinuous cubic phases in fatty acid/phosphatidylcholine mixtures: the effects of pressure and lipid composition. Physical Chemistry Chemical Physics, 1999, 1, 887-893.	1.3	53
107	Pressure Perturbation Calorimetry: A New Technique Provides Surprising Results on the Effects of Co-solvents on Protein Solvation and Unfolding Behaviour. ChemPhysChem, 2004, 5, 566-571.	1.0	53
108	Protein–Protein Interactions in Complex Cosolvent Solutions. ChemPhysChem, 2007, 8, 679-689.	1.0	53

#	Article	IF	CITATIONS
109	Effect of Pressure on Islet Amyloid Polypeptide Aggregation: Revealing the Polymorphic Nature of the Fibrillation Process. Biochemistry, 2008, 47, 6352-6360.	1.2	53
110	Volumetric Properties of Hydrated Peptides: Voronoi–Delaunay Analysis of Molecular Simulation Runs. Journal of Physical Chemistry B, 2011, 115, 14217-14228.	1.2	53
111	The Effect of Ionic Strength, Temperature, and Pressure on the Interaction Potential of Dense Protein Solutions: From Nonlinear Pressure Response to Protein Crystallization. Biophysical Journal, 2012, 102, 2641-2648.	0.2	53
112	pH-Driven Polymorphism of Insulin Amyloid-Like Fibrils. PLoS ONE, 2015, 10, e0136602.	1.1	53
113	Reentrant Liquid-Liquid Phase Separation in Protein Solutions at Elevated Hydrostatic Pressures. Physical Review Letters, 2014, 112, 028101.	2.9	52
114	Misplaced helix slows down ultrafast pressure-jump protein folding. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8087-8092.	3.3	51
115	The effect of fluoride on the sol-gel process. Journal of Non-Crystalline Solids, 1988, 105, 214-222.	1.5	50
116	The electrical conductivity of expanded liquid caesium. Journal of Physics Condensed Matter, 1992, 4, 1659-1669.	0.7	50
117	On the existence of bicontinuous cubic phases in dioleoylphosphatidylethanolamine. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1994, 98, 1287-1293.	0.9	50
118	Pressure Effects on the Structure and Phase Behavior of DMPC-Gramicidin Lipid Bilayers: A Synchrotron SAXS and 2H-NMR Spectroscopy Study. Biophysical Journal, 2006, 90, 956-966.	0.2	50
119	Thermal breaking of spanning water networks in the hydration shell of proteins. Journal of Chemical Physics, 2005, 123, 224905.	1.2	49
120	Insertion of Lipidated Ras Proteins into Lipid Monolayers Studied by Infrared Reflection Absorption Spectroscopy (IRRAS). Biophysical Journal, 2006, 91, 1388-1401.	0.2	49
121	A molecular dynamics simulation of SNase and its hydration shell at high temperature and high pressure. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 522-534.	1.1	49
122	Comparing the structural properties of human and rat islet amyloid polypeptide by MD computer simulations. Biophysical Chemistry, 2011, 156, 43-50.	1.5	49
123	Structure of Expanded Fluid Metals. Physics and Chemistry of Liquids, 1989, 20, 1-15.	0.4	48
124	Zinc-1,4-benzenedicarboxylate-bipyridine frameworks – linker functionalization impacts network topology during solvothermal synthesis. Journal of Materials Chemistry, 2012, 22, 909-918.	6.7	48
125	Pressure perturbation calorimetic studies of the solvation properties and the thermal unfolding of staphylococcal nuclease. Physical Chemistry Chemical Physics, 2004, 6, 1952.	1.3	47
126	Toward Extreme Biophysics: Deciphering the Infrared Response of Biomolecular Solutions at High Pressures. Angewandte Chemie - International Edition, 2016, 55, 9534-9538.	7.2	47

#	Article	IF	CITATIONS
127	Structure and dynamics of expanded liquid alkali metals. Journal of Non-Crystalline Solids, 1993, 156-158, 9-14.	1.5	46
128	Cosolvent effects on the fibrillation reaction of human IAPP. Physical Chemistry Chemical Physics, 2013, 15, 8902.	1.3	46
129	Calculation of the volumetric characteristics of biomacromolecules in solution by the Voronoi–Delaunay technique. Biophysical Chemistry, 2014, 192, 1-9.	1.5	46
130	TMAO and urea in the hydration shell of the protein SNase. Physical Chemistry Chemical Physics, 2017, 19, 6345-6357.	1.3	46
131	Solvation properties and stability of ribonuclease A in normal and deuterated water studied by dielectric relaxation and differential scanning/pressure perturbation calorimetry. Physical Chemistry Chemical Physics, 2004, 6, 1899-1905.	1.3	44
132	Hydration and structure—the two sides of the insulin aggregation process. Physical Chemistry Chemical Physics, 2004, 6, 1938-1943.	1.3	44
133	The Effects of Lipid Membranes, Crowding and Osmolytes on the Aggregation, and Fibrillation Propensity of Human IAPP. Journal of Diabetes Research, 2015, 2015, 1-21.	1.0	44
134	Regulation of K-Ras4B Membrane Binding by Calmodulin. Biophysical Journal, 2016, 111, 113-122.	0.2	44
135	High-Pressure SAXS Study of Folded and Unfolded Ensembles of Proteins. Biophysical Journal, 2010, 99, 3430-3437.	0.2	43
136	Temperature–pressure phase diagram of a heterogeneous anionic model biomembrane system: Results from a combined calorimetry, spectroscopy and microscopy study. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1187-1195.	1.4	42
137	Toward Copolymers with Ideal Thermosensitivity: Solution Properties of Linear, Well-Defined Polymers of <i>N</i> -Isopropyl Acrylamide and <i>N</i> , <i>N</i> -Diethyl Acrylamide. Macromolecules, 2012, 45, 8021-8026.	2.2	42
138	Crowding effects on the temperature and pressure dependent structure, stability and folding kinetics of Staphylococcal Nuclease. Physical Chemistry Chemical Physics, 2014, 16, 5965.	1.3	42
139	Effect of Temperature, Pressure, and Cosolvents on Structural and Dynamic Properties of the Hydration Shell of SNase:  A Molecular Dynamics Computer Simulation Study. Journal of Physical Chemistry B, 2008, 112, 997-1006.	1.2	40
140	Fourier Transform Infrared Spectroscopy Provides a Fingerprint for the Tetramer and for the Aggregates of Transthyretin. Biophysical Journal, 2006, 91, 957-967.	0.2	39
141	Pressure Tuning of the Morphology of Heterogeneous Lipid Vesicles: A Two-Photon-Excitation Fluorescence Microscopy Study. Biophysical Journal, 2006, 91, 2936-2942.	0.2	39
142	Influence of the local anesthetic tetracaine on the phase behavior and the thermodynamic properties of phospholipid bilayers. Biophysical Journal, 1993, 65, 2041-2046.	0.2	38
143	High Pressure Volumetric Measurements on Phospholipid Bilayers. Zeitschrift Fur Physikalische Chemie, 1994, 184, 205-218.	1.4	38
144	Pressure Perturbation and Differential Scanning Calorimetric Studies of Bipolar Tetraether Liposomes Derived from the Thermoacidophilic Archaeon Sulfolobus acidocaldarius. Biophysical Journal, 2005, 89, 1841-1849.	0.2	38

#	Article	IF	CITATIONS
145	Unique Features of the Folding Landscape of a Repeat Protein Revealed byÂPressure Perturbation. Biophysical Journal, 2010, 98, 2712-2721.	0.2	38
146	Applications of pressure perturbation calorimetry in biophysical studies. Biophysical Chemistry, 2011, 156, 13-23.	1.5	38
147	Kinetics of phase transformations between lyotropic lipid mesophases of different topology: a time-resolved synchrotron X-ray diffraction study using the pressure-jump relaxation technique. Physical Chemistry Chemical Physics, 2000, 2, 151-162.	1.3	37
148	Modulation of Concentration Fluctuations in Phase-Separated Lipid Membranes by Polypeptide Insertion. Biophysical Journal, 2002, 83, 334-344.	0.2	37
149	Influence of cosolvents, self-crowding, temperature and pressure on the sub-nanosecond dynamics and folding stability of lysozyme. Physical Chemistry Chemical Physics, 2017, 19, 14230-14237.	1.3	37
150	Co-solvent effects on reaction rate and reaction equilibrium of an enzymatic peptide hydrolysis. Physical Chemistry Chemical Physics, 2018, 20, 11317-11326.	1.3	37
151	Structure and forces in expanded liquid cesium. The Journal of Physical Chemistry, 1988, 92, 7171-7174.	2.9	36
152	Relating structure and translational dynamics in aqueous dispersions of monoolein. Chemistry and Physics of Lipids, 2000, 106, 115-126.	1.5	36
153	Thermodynamic Properties Underlying the α-Helix-to-β-Sheet Transition, Aggregation, and Amyloidogenesis of Polylysine as Probed by Calorimetry, Densimetry, and Ultrasound Velocimetry. Journal of Physical Chemistry B, 2005, 109, 19043-19045.	1.2	36
154	Protein Amyloidogenesis in the Context of Volume Fluctuations: A Case Study on Insulin. ChemPhysChem, 2006, 7, 1046-1049.	1.0	36
155	Capturing the Interaction Potential of Amyloidogenic Proteins. Physical Review Letters, 2007, 99, 028101.	2.9	36
156	Dissociation of the K-Ras4B/PDEδ Complex upon Contact with Lipid Membranes: Membrane Delivery Instead of Extraction. Journal of the American Chemical Society, 2012, 134, 11503-11510.	6.6	36
157	Influence of Pressure and Crowding on the Sub-Nanosecond Dynamics of Globular Proteins. Journal of Physical Chemistry B, 2015, 119, 4842-4848.	1.2	36
158	Pressureâ€Induced Dissolution and Reentrant Formation of Condensed, Liquid–Liquid Phaseâ€Separated Elastomeric αâ€Elastin. Chemistry - A European Journal, 2018, 24, 8286-8291.	1.7	36
159	The structural properties of liquid and quenched sulphur II. Journal of Physics Condensed Matter, 1994, 6, 3619-3628.	0.7	35
160	Template-controlled conformational patterns of insulin fibrillar self-assembly reflect history of solvation of the amyloid nuclei. Physical Chemistry Chemical Physics, 2005, 7, 1349.	1.3	35
161	X-ray Kinematography of Phase Transformations of Three-Component Lipid Mixtures: A Time-Resolved Synchrotron X-ray Scattering Study Using the Pressure-Jump Relaxation Technique. Langmuir, 2008, 24, 11851-11859.	1.6	35
162	Conformational changes upon high pressure induced hydration of poly(N-isopropylacrylamide) microgels. Soft Matter, 2013, 9, 5862.	1.2	35

#	Article	IF	CITATIONS
163	Structural basis for the dissociation of α-synuclein fibrils triggered by pressure perturbation of the hydrophobic core. Scientific Reports, 2016, 6, 37990.	1.6	35
164	Interaction of cytochrome c with cubic monoolein mesophases at limited hydration conditions: The effects of concentration, temperature and pressure. Physical Chemistry Chemical Physics, 2003, 5, 1440-1450.	1.3	34
165	Effects of Lipid Confinement on Insulin Stability and Amyloid Formation. Langmuir, 2007, 23, 7118-7126.	1.6	34
166	<i>>V_i</i> -Value Analysis:  A Pressure-Based Method for Mapping the Folding Transition State Ensemble of Proteins. Journal of the American Chemical Society, 2007, 129, 14108-14109.	6.6	34
167	Revealing Different Aggregation Pathways of Amyloidogenic Proteins by Ultrasound Velocimetry. Biophysical Journal, 2008, 94, 3241-3246.	0.2	34
168	Influence of pressure on the state of poly(N-isopropylacrylamide) and poly(N,N-diethylacrylamide) derived polymers in aqueous solution as probed by FTIR-spectroscopy. Polymer, 2010, 51, 3653-3659.	1.8	34
169	Hydrostatic Pressure Effects on the Lamellar to Gyroid Cubic Phase Transition of Monolinolein at Limited Hydration. Langmuir, 2012, 28, 13018-13024.	1.6	34
170	Impact of Macromolecular Crowding and Compression on Protein–Protein Interactions and Liquid–Liquid Phase Separation Phenomena. Macromolecules, 2019, 52, 1772-1784.	2.2	34
171	Kinetics of Lyotropic Phase Transitions Involving the Inverse Bicontinuous Cubic Phases. Langmuir, 2000, 16, 3578-3582.	1.6	33
172	Incorporation of α-chymotrypsin into the 3D channels of bicontinuous cubic lipid mesophases. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 424-433.	1.1	33
173	Fluorescence Spectroscopic Studies of Pressure Effects on Na+,K+-ATPase Reconstituted into Phospholipid Bilayers and Model Raft Mixturesâ€. Biochemistry, 2007, 46, 1672-1683.	1.2	33
174	Interaction of IAPP and Insulin with Model Interfaces Studied Using Neutron Reflectometry. Biophysical Journal, 2009, 96, 1115-1123.	0.2	33
175	Phosphorylation Weakens but Does Not Inhibit Membrane Binding and Clustering of K-Ras4B. ACS Chemical Biology, 2017, 12, 1703-1710.	1.6	33
176	Osmolyte Effects on the Conformational Dynamics of a DNA Hairpin at Ambient and Extreme Environmental Conditions. Angewandte Chemie - International Edition, 2017, 56, 5045-5049.	7.2	33
177	Effect of pressure on the stability, phase behaviour and transformation kinetics between structures of lyotropic lipid mesophases and model membrane systems. Journal of Physics Condensed Matter, 1998, 10, 11499-11518.	0.7	32
178	Volume Changes Associated with Guanidine Hydrochloride, Temperature, and Ethanol Induced Unfolding of Lysozyme. Journal of Physical Chemistry B, 2010, 114, 16881-16886.	1.2	32
179	Protein hydration and volumetric properties. Current Opinion in Colloid and Interface Science, 2011, 16, 568-571.	3.4	32
180	Rate of phase transformations between mesophases of the 1:2 lecithin/fatty acid mixtures DMPC/MA and DPPC/PA ―a timeâ€resolved synchrotron Xâ€ray diffraction study. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1996, 100, 1713-1722.	0.9	31

#	Article	IF	CITATIONS
181	Structure and Conformation of Bipolar Tetraether Lipid Membranes Derived from Thermoacidophilic ArchaeonSulfolobus acidocaldariusas Revealed by Small-Angle X-ray Scattering and High-Pressure FT-IR Spectroscopy. Journal of Physical Chemistry B, 2003, 107, 8694-8700.	1.2	31
182	Peptide Aggregation in Finite Systems. Biophysical Journal, 2008, 95, 3208-3221.	0.2	31
183	Modulation of the Polymerization Kinetics of α/βâ€Tubulin by Osmolytes and Macromolecular Crowding. ChemPhysChem, 2017, 18, 189-197.	1.0	31
184	Exploring the effects of cosolutes and crowding on the volumetric and kinetic profile of the conformational dynamics of a poly dA loop DNA hairpin: a single-molecule FRET study. Nucleic Acids Research, 2019, 47, 981-996.	6.5	31
185	Supramolecular Mechanism of Viral Envelope Disruption by Molecular Tweezers. Journal of the American Chemical Society, 2020, 142, 17024-17038.	6.6	31
186	The metal-non-metal transition and the dynamic structure factor of expanded fluid alkali metals. Journal of Physics Condensed Matter, 1993, 5, B183-B192.	0.7	30
187	Intrinsic thermal expansivity and hydrational properties of amyloid peptide Aβ42 in liquid water. Journal of Chemical Physics, 2008, 129, 195101.	1.2	30
188	Compressibilities and Volume Fluctuations of Archaeal Tetraether Liposomes. Biophysical Journal, 2010, 99, 3319-3326.	0.2	30
189	In situ investigation of Geobacillus stearothermophilus spore germination and inactivation mechanisms under moderate high pressure. Food Microbiology, 2014, 41, 8-18.	2.1	30
190	Combined Effects of Temperature, Pressure, and Coâ€Solvents on the Polymerization Kinetics of Actin. ChemPhysChem, 2015, 16, 1379-1385.	1.0	30
191	Water-Mediated Protein-Protein Interactions at High Pressures are Controlled by a Deep-Sea Osmolyte. Physical Review Letters, 2018, 121, 038101.	2.9	30
192	Pressure and Temperature Effects on Conformational and Hydrational Properties of Lamellar and Bicontinuous Cubic Phases of the Fully Hydrated Monoacylglyceride MonoelaidinA Fourier Transform-Infrared Spectroscopy Study Using the Diamond Anvil Technique. Langmuir, 1998, 14, 2903-2909.	1.6	29
193	Power-law fluctuations in phase-separated lipid membranes. Physical Review E, 1999, 60, 7354-7359.	0.8	29
194	Volumetric Properties, Compressibilities and Volume Fluctuations in Phospholipid-Cholesterol Bilayers. Zeitschrift Fur Physikalische Chemie, 2003, 217, 831-846.	1.4	29
195	Small-scale composition fluctuations and microdomain formation in lipid raft models as revealed by small-angle neutron scattering. Physical Chemistry Chemical Physics, 2004, 6, 5531.	1.3	29
196	The effects of various membrane physical–chemical properties on the aggregation kinetics of insulin. Chemistry and Physics of Lipids, 2007, 149, 28-39.	1.5	29
197	Visualizing association of lipidated signaling proteins in heterogeneous membranesâ^Partitioning into subdomains, lipid sorting, interfacial adsorption, and protein association. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1409-1417.	1.4	28
198	Structural plasticity of staphylococcal nuclease probed by perturbation with pressure and pH. Proteins: Structure, Function and Bioinformatics, 2011, 79, 1293-1305.	1.5	28

#	Article	IF	CITATIONS
199	Compatible solutes contribute to heat resistance and ribosome stability in Escherichia coli AW1.7. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 1351-1357.	1.1	28
200	Modulation of the Thermodynamic Signatures of an RNA Thermometer by Osmolytes and Salts. Angewandte Chemie - International Edition, 2017, 56, 2302-2306.	7.2	28
201	Osmolyte Effects on the Conformational Dynamics of a DNA Hairpin at Ambient and Extreme Environmental Conditions. Angewandte Chemie, 2017, 129, 5127-5131.	1.6	28
202	Antagonistic effects of natural osmolyte mixtures and hydrostatic pressure on the conformational dynamics of a DNA hairpin probed at the single-molecule level. Physical Chemistry Chemical Physics, 2018, 20, 13159-13170.	1.3	28
203	The Deep Sea Osmolyte Trimethylamine <i>N</i> â€Oxide and Macromolecular Crowders Rescue the Antiparallel Conformation of the Human Telomeric Gâ€Quadruplex from Urea and Pressure Stress. Chemistry - A European Journal, 2018, 24, 14346-14351.	1.7	28
204	A SANS study of the effect of catalyst on the growth process of silica gels. Journal of Non-Crystalline Solids, 1989, 108, 137-142.	1.5	27
205	NMR study of translational and rotational dynamics in monoolein-water mesophases: Obstruction and hydration effects. Physical Review E, 2000, 62, 8182-8194.	0.8	27
206	An access to buried interfaces: the X-ray reflectivity set-up of BL9 at DELTA. Journal of Synchrotron Radiation, 2008, 15, 600-605.	1.0	27
207	Microdomains in Lipid Vesicles: Structure and Distribution Assessed by Small-Angle Neutron Scattering. Journal of Physical Chemistry B, 2010, 114, 5643-5648.	1.2	27
208	Investigation of structural changes of β-casein and lysozyme at the gas–liquid interface during foam fractionation. Journal of Biotechnology, 2012, 161, 138-146.	1.9	27
209	Effect of Molecular Crowding on the Temperature–Pressure Stability Diagram of Ribonuclease A. ChemPhysChem, 2013, 14, 386-393.	1.0	27
210	Cosolvent and crowding effects on the polymerization kinetics of actin. Physical Chemistry Chemical Physics, 2015, 17, 8330-8337.	1.3	27
211	Pressure Modulation of the Enzymatic Activity of Phospholipase A2, A Putative Membrane-Associated Pressure Sensor. Journal of the American Chemical Society, 2015, 137, 12588-12596.	6.6	27
212	Biomolecular Condensates under Extreme Martian Salt Conditions. Journal of the American Chemical Society, 2021, 143, 5247-5259.	6.6	27
213	Methoden der Biophysikalischen Chemie. Teubner-Studienbücher Chemie, 1998, , .	0.0	27
214	The metal-non-metal transition and the static and dynamic structure factor of expanded liquid alkali metals. Journal of Physics Condensed Matter, 1994, 6, A245-A248.	0.7	26
215	Pressure Perturbation Calorimetic Studies of the Solvation Properties and the Thermal Unfolding of Proteins in Solution. Zeitschrift Fur Physikalische Chemie, 2003, 217, 1221-1244.	1.4	26
216	The effects of glycine, TMAO and osmolyte mixtures on the pressure dependent enzymatic activity of α-chymotrypsin. Physical Chemistry Chemical Physics, 2018, 20, 1347-1354.	1.3	26

#	Article	IF	CITATIONS
217	Membrane disintegration by the antimicrobial peptide (P)GKY20: lipid segregation and domain formation. Physical Chemistry Chemical Physics, 2019, 21, 3989-3998.	1.3	26
218	Pressure Dependence of the Photocycle Kinetics of Bacteriorhodopsin. Biophysical Journal, 2002, 83, 3490-3498.	0.2	25
219	Choline-releasing glycerophosphodiesterase EDI3 links the tumor metabolome to signaling network activities. Cell Cycle, 2012, 11, 4499-4506.	1.3	25
220	Lipid Bilayers Significantly Modulate Cross-Fibrillation of Two Distinct Amyloidogenic Peptides. Journal of the American Chemical Society, 2013, 135, 13582-13589.	6.6	25
221	Cosolvent and Crowding Effects on the Temperature and Pressure Dependent Conformational Dynamics and Stability of Globular Actin. Journal of Physical Chemistry B, 2016, 120, 6575-6586.	1.2	25
222	Influence of isoform-specific Ras lipidation motifs on protein partitioning and dynamics in model membrane systems of various complexity. Biological Chemistry, 2017, 398, 547-563.	1.2	25
223	Stimulated Transitions of Directed Nonequilibrium Selfâ€Assemblies. Advanced Materials, 2017, 29, 1703495.	11.1	25
224	Temperature-pressure configurational landscape of lipid bilayers and proteins. Cellular and Molecular Biology, 2004, 50, 397-417.	0.3	25
225	The structural properties of liquid and quenched sulfur. Journal of Non-Crystalline Solids, 1988, 106, 100-103.	1.5	24
226	Highâ€pressure differential thermal analysis of lamellar to lamellar and lamellar to nonâ€lamellar lipid phase transitions. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1994, 98, 214-218.	0.9	24
227	Small-Angle Neutron Scattering Study of the Effect of Pressure on AOTâ^'n-Octaneâ^'Water Mesophases and the Effect of α-Chymotrypsin Incorporation. Langmuir, 2002, 18, 8626-8632.	1.6	24
228	Marasmius scorodonius extracellular dimeric peroxidase — Exploring its temperature and pressure stability. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 1091-1098.	1.1	24
229	Physical Properties of Archaeal Tetraether Lipid Membranes As Revealed by Differential Scanning and Pressure Perturbation Calorimetry, Molecular Acoustics, and Neutron Reflectometry: Effects of Pressure and Cell Growth Temperature. Langmuir, 2012, 28, 5211-5217.	1.6	24
230	Influence of high-pressure on cononsolvency of poly(N-isopropylacrylamide) nanogels in water/methanol mixtures. Polymer, 2014, 55, 2000-2007.	1.8	24
231	Pressure and Temperature Effects on the Activity and Structure of the Catalytic Domain of Human MT1-MMP. Biophysical Journal, 2015, 109, 2371-2381.	0.2	24
232	Use of the fluorescent probe LAURDAN to label and measure inner membrane fluidity of endospores of Clostridium spp Journal of Microbiological Methods, 2012, 91, 93-100.	0.7	23
233	Rotational and Translational Dynamics of Ras Proteins upon Binding to Model Membrane Systems. ChemPhysChem, 2013, 14, 3698-3705.	1.0	23
234	Exploring the Stability Limits of Actin and Its Suprastructures. Biophysical Journal, 2014, 107, 2982-2992.	0.2	23

#	Article	IF	CITATIONS
235	Exploring volume, compressibility and hydration changes of folded proteins upon compression. Physical Chemistry Chemical Physics, 2015, 17, 8499-8508.	1.3	23
236	Neutron-scattering experiments at high temperatures and pressures. High Pressure Research, 1988, 1, 23-37.	0.4	22
237	Survival of Polyanions in Expanded Liquid Alloys. Europhysics Letters, 1994, 27, 221-226.	0.7	22
238	High pressure synchrotron X-ray diffraction studies of biological molecules using the diamond anvil technique. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 368, 847-851.	0.7	22
239	The use of pressure-jump relaxation kinetics to study protein folding landscapes. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 489-496.	1.1	22
240	Structure and Phase Behavior of Archaeal Lipid Monolayers. Langmuir, 2011, 27, 13113-13121.	1.6	22
241	Pressure modulates the self-cleavage step of the hairpin ribozyme. Nature Communications, 2017, 8, 14661.	5.8	22
242	Enzymatic activity under pressure. MRS Bulletin, 2017, 42, 738-742.	1.7	22
243	Combined co-solvent and pressure effect on kinetics of a peptide hydrolysis: an activity-based approach. Physical Chemistry Chemical Physics, 2019, 21, 22224-22229.	1.3	22
244	Insights into the Action Mechanism of the Antimicrobial Peptide Lasioglossin III. International Journal of Molecular Sciences, 2021, 22, 2857.	1.8	22
245	Smallâ€Angle Xâ€Ray Scattering and Nearâ€Infrared Vibrational Spectroscopy of Water Confined in Aerosolâ€OT Reverse Micelles. ChemPhysChem, 2008, 9, 2794-2801.	1.0	21
246	Aggregation of Amyloidogenic Peptides near Hydrophobic and Hydrophilic Surfaces. Langmuir, 2009, 25, 8111-8116.	1.6	21
247	Interaction of rhamnolipids with model biomembranes of varying complexity. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183431.	1.4	21
248	The effects of cosolutes and crowding on the kinetics of protein condensate formation based on liquid–liquid phase separation: a pressure-jump relaxation study. Scientific Reports, 2020, 10, 17245.	1.6	21
249	Electrical Conductivity of Na-NH ₃ and Cesium in the Critical Region*. Zeitschrift Fur Physikalische Chemie, 1988, 156, 303-307.	1.4	20
250	The Effect of Temperature and Pressure on Structural and Dynamic Properties of Phospholipid/Sterol Mixtures — A Steady-State and Time-Resolved Fluorescence Anisotropy Study. Zeitschrift Fur Physikalische Chemie, 1996, 193, 151-173.	1.4	20
251	Influence of High Pressure on the Dimerization of ToxR, a Protein Involved in Bacterial Signal Transduction. Applied and Environmental Microbiology, 2008, 74, 7821-7823.	1.4	20
252	Gibbs energy determinants of lipoprotein insertion into lipid membranes: the case study of Ras proteins. Faraday Discussions, 2013, 161, 549-561.	1.6	20

#	Article	IF	CITATIONS
253	Elucidation of the Catalytic Mechanism of a Miniature Zinc Finger Hydrolase. Journal of Physical Chemistry B, 2017, 121, 6390-6398.	1.2	20
254	Effect of hyaluronic acid on phospholipid model membranes. Colloids and Surfaces B: Biointerfaces, 2019, 173, 327-334.	2.5	20
255	Neutron Scattering Study on Amorphous Sulphur. Europhysics Letters, 1990, 11, 225-228.	0.7	19
256	The Dynamic Structure Factor of Expanded Liquid Rubidium. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1991, 95, 1133-1136.	0.9	19
257	Lateral organization of binary-lipid membranes—Evidence for fractal-like behaviour in the gel-fluid coexistence region. Europhysics Letters, 1997, 37, 577-582.	0.7	19
258	Pressure Modulation of Rasâ \in "Membrane Interactions and Intervesicle Transfer. Journal of the American Chemical Society, 2013, 135, 6149-6156.	6.6	19
259	Effects of the deep-sea osmolyte TMAO on the temperature and pressure dependent structure and phase behavior of lipid membranes. Physical Chemistry Chemical Physics, 2019, 21, 18533-18540.	1.3	19
260	Characterisation of a synthetic Archeal membrane reveals a possible new adaptation route to extreme conditions. Communications Biology, 2021, 4, 653.	2.0	19
261	The N-terminal domain of the prion protein is required and sufficient for liquid–liquid phase separation: A crucial role of the Aβ-binding domain. Journal of Biological Chemistry, 2021, 297, 100860.	1.6	19
262	Computer modelling studies of expanded liquid KPb. Journal of Physics Condensed Matter, 1995, 7, 5733-5743.	0.7	18
263	Static and time-resolved synchrotron small-angle x-ray scattering studies of lyotropic lipid mesophases, model biomembranes and proteins in solution. Journal of Physics Condensed Matter, 2004, 16, S327-S352.	0.7	18
264	Effects of temperature and pressure on the lateral organization of model membranes with functionally reconstituted multidrug transporter LmrA. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 390-401.	1.4	18
265	Prebiotic Cell Membranes that Survive Extreme Environmental Pressure Conditions. Angewandte Chemie - International Edition, 2014, 53, 8397-8401.	7.2	18
266	Alteration of Protein Binding Affinities by Aqueous Two-Phase Systems Revealed by Pressure Perturbation. Scientific Reports, 2020, 10, 8074.	1.6	18
267	Interaction of imidazolium-based lipids with phospholipid bilayer membranes of different complexity. Physical Chemistry Chemical Physics, 2020, 22, 9775-9788.	1.3	18
268	Conductivity- and Neutron Scattering Experiments on Expanded Fluid Cesium in the Metal-Nonmetal Transition Region*. Zeitschrift Fur Physikalische Chemie, 1988, 156, 145-149.	1.4	17
269	Influence of the Lipid Anchor Motif of N-Ras on the Interaction with Lipid Membranes: A Surface Plasmon Resonance Study. Biophysical Journal, 2010, 98, 2226-2235.	0.2	17
270	Detection of lipid raft domains in neutral and anionic Langmuir monolayers and bilayers of complex lipid composition. Soft Matter, 2012, 8, 2170.	1.2	17

#	Article	IF	CITATIONS
271	Specific anion effects on the pressure dependence of the protein–protein interaction potential. Physical Chemistry Chemical Physics, 2014, 16, 7423.	1.3	17
272	Probing conformational and functional substates of calmodulin by high pressure FTIR spectroscopy: influence of Ca ²⁺ binding and the hypervariable region of K-Ras4B. Physical Chemistry Chemical Physics, 2016, 18, 30020-30028.	1.3	17
273	Entropically driven Polymeric Enzyme Inhibitors by Endâ€Group directed Conjugation. Chemistry - A European Journal, 2018, 24, 4523-4527.	1.7	17
274	On the Origin of Microtubules' High-Pressure Sensitivity. Biophysical Journal, 2018, 114, 1080-1090.	0.2	17
275	Combined effects of osmotic and hydrostatic pressure on multilamellar lipid membranes in the presence of PEG and trehalose. Soft Matter, 2018, 14, 8792-8802.	1.2	17
276	The consequences of cavity creation on the folding landscape of a repeat protein depend upon context. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8153-E8161.	3.3	17
277	Boosting the kinetic efficiency of formate dehydrogenase by combining the effects of temperature, high pressure and co-solvent mixtures. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112127.	2.5	17
278	Depolarized interaction-induced light scattering in mercury vapor: The low-density spectrum. Physical Review A, 1992, 45, 6910-6913.	1.0	16
279	The <i>T,x,p</i> â€phase diagram of binary phospholipid mixtures. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1994, 98, 1585-1589.	0.9	16
280	Influence of Cholesterol and β‣itosterol on the Dynamic Behaviour of DPPC as Detected by TMAâ€DPH and PyrPC Fluorescence: A Fluorescence Lifetime Distribution and Timeâ€Resolved Anisotropy Study. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1995, 99, 1479-1488.	0.9	16
281	High Pressure NMR Studies on Lyotropic Lipid Mesophases and Model Biomembranes. Annual Reports on NMR Spectroscopy, 2003, 50, 163-200.	0.7	16
282	The temperature–pressure phase diagram of a DPPC–ergosterol fungal model membrane—a SAXS and FT-IR spectroscopy study. Chemistry and Physics of Lipids, 2008, 152, 57-63.	1.5	16
283	<i>In Situ</i> Determination of Clostridium Endospore Membrane Fluidity during Pressure-Assisted Thermal Processing in Combination with Nisin or Reutericyclin. Applied and Environmental Microbiology, 2013, 79, 2103-2106.	1.4	16
284	Probing volumetric properties of biomolecular systems by pressure perturbation calorimetry (PPC) – The effects of hydration, cosolvents and crowding. Methods, 2015, 76, 67-77.	1.9	16
285	Properties of Hydrogen-Bonded Liquids at Interfaces. Zeitschrift Fur Physikalische Chemie, 2018, 232, 937-972.	1.4	16
286	The small molecule inhibitor anle145c thermodynamically traps human islet amyloid peptide in the form of non-cytotoxic oligomers. Scientific Reports, 2019, 9, 19023.	1.6	16
287	High-pressure1H NMR on model biomembranes: a study of the local anaesthetic tetracaine incorporated into POPC lipid bilayers. Magnetic Resonance in Chemistry, 2000, 38, 662-667.	1.1	15
288	The Solventâ€Dependent Shift of the Amide I Band of a Fully Solvated Peptide as a Local Probe for the Solvent Composition in the Peptide/Solvent Interface. ChemPhysChem, 2008, 9, 2742-2750.	1.0	15

#	Article	IF	CITATIONS
289	Kinetic Insights into the Elongation Reaction of Actin Filaments as a Function of Temperature, Pressure, and Macromolecular Crowding. ChemPhysChem, 2015, 16, 3681-3686.	1.0	15
290	Effect of ectoine, hydroxyectoine and β-hydroxybutyrate on the temperature and pressure stability of phospholipid bilayer membranes of different complexity. Colloids and Surfaces B: Biointerfaces, 2019, 178, 404-411.	2.5	15
291	Modulation of enzymatic activity by aqueous two-phase systems and pressure – rivalry between kinetic constants. Chemical Communications, 2020, 56, 395-398.	2.2	15
292	Modulation of the Conformational Space of SARSâ€CoVâ€2 RNA Quadruplex RGâ€1 by Cellular Components and the Amyloidogenic Peptides αâ€Synuclein and hIAPP. Chemistry - A European Journal, 2022, 28, .	1.7	15
293	The structural properties of liquid, solid and amorphous sulphur. Journal of Physics Condensed Matter, 1990, 2, SA215-SA218.	0.7	14
294	The Influence of the Local Anaesthetic Tetracaine on the Temperature and Pressure Dependent Phase Behaviour of Model Biomembranes. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1991, 95, 811-820.	0.9	14
295	Collision-induced depolarized Raman scattering from dense mercury vapor. Physical Review A, 1998, 57, 2635-2639.	1.0	14
296	High pressure cell for neutron reflectivity measurements up to 2500 bar. Review of Scientific Instruments, 2011, 82, 025106.	0.6	14
297	Intermolecular interactions in highly concentrated protein solutions upon compression and the role of the solvent. Journal of Chemical Physics, 2014, 141, 22D506.	1.2	14
298	Solvent Effects on the Dynamics of Amyloidogenic Insulin Revealed by Neutron Spin Echo Spectroscopy. Journal of Physical Chemistry B, 2014, 118, 3310-3316.	1.2	14
299	Exploring the Free Energy and Conformational Landscape of tRNA at High Temperature and Pressure. ChemPhysChem, 2015, 16, 138-146.	1.0	14
300	Pressure and cosolvent modulation of the catalytic activity of amyloid fibrils. Chemical Communications, 2018, 54, 5696-5699.	2.2	14
301	Pressure-dependent electronic structure calculations using integral equation-based solvation models. Biophysical Chemistry, 2020, 257, 106258.	1.5	14
302	High pressures increase α-chymotrypsin enzyme activity under perchlorate stress. Communications Biology, 2020, 3, 550.	2.0	14
303	Exploring the polymorphism, conformational dynamics and function of amyloidogenic peptides and proteins by temperature and pressure modulation. Biophysical Chemistry, 2021, 268, 106506.	1.5	14
304	High-pressure small-angle neutron scattering (SANS) study of 1,2-dielaidoyl-sn-glycero-3-phosphocholine bilayers. Biochimica Et Biophysica Acta - Biomembranes, 1989, 982, 85-88.	1.4	13
305	Exploring the thermodynamic derivatives of the structure factor of dense protein solutions. Physical Chemistry Chemical Physics, 2012, 14, 9486.	1.3	13
306	Interaction of the human N-Ras protein with lipid raft model membranes of varying degrees of complexity. Biological Chemistry, 2014, 395, 779-789.	1.2	13

#	Article	IF	CITATIONS
307	Disentangling Volumetric and Hydrational Properties of Proteins. Journal of Physical Chemistry B, 2015, 119, 1881-1890.	1.2	13
308	Effect of the N-Terminal Helix and Nucleotide Loading on the Membrane and Effector Binding of Arl2/3. Biophysical Journal, 2015, 109, 1619-1629.	0.2	13
309	Phase behavior of lysozyme solutions in the liquid–liquid phase coexistence region at high hydrostatic pressures. Physical Chemistry Chemical Physics, 2016, 18, 14252-14256.	1.3	13
310	The effects of osmolytes and crowding on the pressure-induced dissociation and inactivation of dimeric LADH. Physical Chemistry Chemical Physics, 2018, 20, 7093-7104.	1.3	13
311	Single-molecule insights into the temperature and pressure dependent conformational dynamics of nucleic acids in the presence of crowders and osmolytes. Biophysical Chemistry, 2019, 251, 106190.	1.5	13
312	Perturbation of liquid droplets of P-granule protein LAF-1 by the antimicrobial peptide LL-III. Chemical Communications, 2020, 56, 11577-11580.	2.2	13
313	Influence of thermally induced structure changes in diluted β-lactoglobulin solutions on their surface activity and behavior in foam fractionation. Journal of Biotechnology, 2020, 319, 61-68.	1.9	13
314	Pressure Sensitivity of SynGAP/PSDâ€95 Condensates as a Model for Postsynaptic Densities and Its Biophysical and Neurological Ramifications. Chemistry - A European Journal, 2020, 26, 11024-11031.	1.7	13
315	Unraveling the binding characteristics of small ligands to telomeric DNA by pressure modulation. Scientific Reports, 2021, 11, 9714.	1.6	13
316	Structural and dynamic properties of liquid sulfur around the λ-transition. Journal of Non-Crystalline Solids, 1998, 232-234, 309-313.	1.5	12
317	Using pressure in combination with x-ray and neutron scattering techniques for studying the structure, stability and phase behaviour of soft condensed matter and biomolecular systems. Journal of Physics Condensed Matter, 2005, 17, S3077-S3092.	0.7	12
318	Phase behavior and kinetics of pressure-jump induced phase transitions of bicellar lipid mixtures. Soft Matter, 2011, 7, 2709.	1.2	12
319	Exploring the structure and phase behavior of plasma membrane vesicles under extreme environmental conditions. Physical Chemistry Chemical Physics, 2015, 17, 7507-7513.	1.3	12
320	Lipoprotein insertion into membranes of various complexity: lipid sorting, interfacial adsorption and protein clustering. Physical Chemistry Chemical Physics, 2016, 18, 8954-8962.	1.3	12
321	Temperature and pressure limits of guanosine monophosphate self-assemblies. Scientific Reports, 2017, 7, 9864.	1.6	12
322	A hydroxylamine probe for profiling <i>S</i> -acylated fatty acids on proteins. Chemical Communications, 2019, 55, 11183-11186.	2.2	12
323	Dynamics of TMAO and urea in the hydration shell of the protein SNase. Physical Chemistry Chemical Physics, 2019, 21, 19469-19479.	1.3	12
324	The pressure and temperature perturbation approach reveals a whole variety of conformational substates of amyloidogenic hIAPP monitored by 2D NMR spectroscopy. Biophysical Chemistry, 2019, 254, 106239.	1.5	12

#	Article	IF	CITATIONS
325	Impact of Y ³⁺ -ions on the structure and phase behavior of phospholipid model membranes. Physical Chemistry Chemical Physics, 2019, 21, 5730-5743.	1.3	12
326	An Imidazoliumâ€Based Lipid Analogue as a Gene Transfer Agent. Chemistry - A European Journal, 2020, 26, 17176-17182.	1.7	12
327	Remodeling of the Fibrillation Pathway of αâ€Synuclein by Interaction with Antimicrobial Peptide LLâ€III. Chemistry - A European Journal, 2021, 27, 11845-11851.	1.7	12
328	Binding Properties of RNA Quadruplex of SARS-CoV-2 to Berberine Compared to Telomeric DNA Quadruplex. International Journal of Molecular Sciences, 2022, 23, 5690.	1.8	12
329	Thermodynamic, Dynamic and Solvational Properties of PDEδ Binding to Farnesylated Cystein: A Model Study for Uncovering the Molecular Mechanism of PDEδ Interaction with Prenylated Proteins. Journal of Physical Chemistry B, 2014, 118, 966-975.	1.2	11
330	Stability, Hydration, and Thermodynamic Properties of RNase A Confined in Surface-Functionalized SBA-15 Mesoporous Molecular Sieves. Journal of Physical Chemistry C, 2014, 118, 21523-21531.	1.5	11
331	Modulation of the Thermodynamic Signatures of an RNA Thermometer by Osmolytes and Salts. Angewandte Chemie, 2017, 129, 2342-2346.	1.6	11
332	The pore morphology of fluoride catalyzed xerogels. Journal of Materials Research, 1989, 4, 693-697.	1.2	10
333	The microscopic structure of liquid mercury from neutron and X-ray diffraction. Physica B: Condensed Matter, 2000, 276-278, 452-453.	1.3	10
334	Structure of the equiatomic liquid alloys K–Sb, K–Bi, and Rb–Bi over a wide temperature range. Journal of Chemical Physics, 2000, 112, 7551-7556.	1.2	10
335	Heat, Cold and Pressure Induced Denaturation of Proteins. Spectroscopy, 2003, 17, 367-376.	0.8	10
336	Translational Dynamics of Lipidated Ras Proteins in the Presence of Crowding Agents and Compatible Osmolytes. ChemPhysChem, 2016, 17, 2164-2169.	1.0	10
337	Faltung einer RNAâ€Haarnadel in der dicht gedrĤgten Zelle. Angewandte Chemie, 2016, 128, 3279-3283.	1.6	10
338	Lateral Organization of Host Heterogeneous Raftâ€like Membranes Altered by the Myristoyl Modification of Tyrosine Kinase câ€6rc. Angewandte Chemie - International Edition, 2017, 56, 10511-10515.	7.2	10
339	The Effect of Natural Osmolyte Mixtures on the Temperature-Pressure Stability of the Protein RNase A. Zeitschrift Fur Physikalische Chemie, 2018, 232, 615-634.	1.4	10
340	Encapsulating properties of sulfobutylether-β-cyclodextrin toward a thrombin-derived antimicrobial peptide. Journal of Thermal Analysis and Calorimetry, 2019, 138, 3249-3256.	2.0	10
341	Cosolvent and pressure effects on enzyme-catalysed hydrolysis reactions. Biophysical Chemistry, 2019, 252, 106209.	1.5	10
342	Remodeling of the Conformational Dynamics of Noncanonical DNA Structures by Monomeric and Aggregated α-Synuclein. Journal of the American Chemical Society, 2020, 142, 18299-18303.	6.6	10

#	Article	IF	CITATIONS
343	Harnessing Pressure Modulation for Exploring Ligand Binding Reactions in Cosolvent Solutions. Journal of Physical Chemistry B, 2021, 125, 539-546.	1.2	10
344	The Effects of Temperature and Pressure on Protein-Ligand Binding in the Presence of Mars-Relevant Salts. Biology, 2021, 10, 687.	1.3	10
345	Volume and energy folding landscape of prion protein revealed by pressure. Brazilian Journal of Medical and Biological Research, 2005, 38, 1195-1201.	0.7	10
346	Gelation Dynamics upon Pressure-Induced Liquid–Liquid Phase Separation in a Water–Lysozyme Solution. Journal of Physical Chemistry B, 2022, 126, 4160-4167.	1.2	10
347	Volumetric Properties of Hydration Water. Journal of Physical Chemistry C, 2009, 113, 11110-11118.	1.5	9
348	The effects of pressure and temperature on the energetics and pivotal surface in a monoacylglycerol/water gyroid inverse bicontinuous cubic phase. Soft Matter, 2014, 10, 3009-3015.	1.2	9
349	Methanolâ€induced change of the mechanism of the temperature―and pressureâ€induced collapse of <i>N</i> â€Substituted acrylamide copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 532-544.	2.4	9
350	Exploring the influence of natural cosolvents on the free energy and conformational landscape of filamentous actin and microtubules. Physical Chemistry Chemical Physics, 2018, 20, 28400-28411.	1.3	9
351	Osmolytes modify protein dynamics and function of tetrameric lactate dehydrogenase upon pressurization. Physical Chemistry Chemical Physics, 2019, 21, 12806-12817.	1.3	9
352	The multifaceted effects of DMSO and high hydrostatic pressure on the kinetic constants of hydrolysis reactions catalyzed by α-chymotrypsin. Physical Chemistry Chemical Physics, 2020, 22, 16325-16333.	1.3	9
353	Untangling the interaction of $\hat{l}\pm$ -synuclein with DNA i-motifs and hairpins by volume-sensitive single-molecule FRET spectroscopy. RSC Chemical Biology, 2021, 2, 1196-1200.	2.0	9
354	Effects of Cosolvents and Crowding Agents on the Stability and Phase Transition Kinetics of the SynGAP/PSD-95 Condensate Model of Postsynaptic Densities. Journal of Physical Chemistry B, 2022, 126, 1734-1741.	1.2	9
355	Struktur und Dynamik von Modell-Biomembranen. Chemie in Unserer Zeit, 1990, 24, 71-81.	0.1	8
356	Neutron diffraction on mercury: density dependence of the static structure factor. Journal of Non-Crystalline Solids, 1999, 250-252, 35-39.	1.5	8
357	The effects of temperature, pressure and peptide incorporation on ternary model raft mixtures—A Laurdan fluorescence spectroscopy study. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 398-404.	1.1	8
358	Intrinsic Volumetric Properties of Trialanine Isomers in Aqueous Solution. ChemPhysChem, 2008, 9, 2779-2784.	1.0	8
359	Demixing Transition of the Aqueous Solution of Amyloidogenic Peptides: A REMD Simulation Study. Journal of Physical Chemistry B, 2009, 113, 9863-9870.	1.2	8
360	Condensation Agents Determine the Temperature–Pressure Stability of Fâ€Actin Bundles. Angewandte Chemie - International Edition, 2015, 54, 11088-11092.	7.2	8

#	Article	IF	CITATIONS
361	Improved activity of α-chymotrypsin on silica particles – A high-pressure stopped-flow study. Biophysical Chemistry, 2016, 218, 1-6.	1.5	8
362	A high pressure study of calmodulin–ligand interactions using small-angle X-ray and elastic incoherent neutron scattering. Physical Chemistry Chemical Physics, 2018, 20, 3514-3522.	1.3	8
363	Liquid–liquid phase separation rescues the conformational stability of a DNA hairpin from pressure–stress. Chemical Communications, 2019, 55, 10673-10676.	2.2	8
364	Analyzing protein-ligand and protein-interface interactions using high pressure. Biophysical Chemistry, 2019, 252, 106194.	1.5	8
365	Cosolvent and Crowding Effects on the Temperature―and Pressureâ€Dependent Dissociation Process of the α/βâ€Tubulin Heterodimer. ChemPhysChem, 2019, 20, 1098-1109.	1.0	8
366	Towards DNAâ€Encoded Micellar Chemistry: DNAâ€Micelle Association and Environment Sensitivity of Catalysis. Chemistry - A European Journal, 2021, 27, 10048-10057.	1.7	8
367	Methoden der Biophysikalischen Chemie. , 2011, , .		8
368	Pressure Effects on Artificial and Cellular Membranes. Sub-Cellular Biochemistry, 2015, 72, 345-370.	1.0	8
369	Deep sea osmolytes in action: their effect on protein–ligand binding under high pressure stress. Physical Chemistry Chemical Physics, 2022, 24, 17966-17978.	1.3	8
370	On a new phase coexistence above the consolute point of Na-NH3solution. Journal of Physics F: Metal Physics, 1981, 11, L281-L284.	1.6	7
371	High-pressure phase transitions in model biomembranes. , 1990, , 216-221.		7
372	Structure of water confined in bicontinuous cubic lipid–water mesophases. Physical Chemistry Chemical Physics, 2000, 2, 1621-1625.	1.3	7
373	Pressure Effects on the Structure and Phase Behavior of Phospholipid–Polypeptide Bilayers – A Synchrotron Small-Angle X-ray Scattering and 2H-NMR Spectroscopy Study on DPPC–Gramicidin Lipid Bilayers. Zeitschrift Fur Physikalische Chemie, 2005, 219, 1321-1345.	1.4	7
374	Islet Amyloid Polypeptide: Aggregation and Fibrillogenesisin vitroand Its Inhibition. Sub-Cellular Biochemistry, 2012, 65, 185-209.	1.0	7
375	Hydrostatic Pressure Increases the Catalytic Activity of Amyloid Fibril Enzymes. Angewandte Chemie, 2016, 128, 12600-12604.	1.6	7
376	High-Pressure NMR and SAXS Reveals How Capping Modulates Folding Cooperativity of the pp32 Leucine-rich Repeat Protein. Journal of Molecular Biology, 2018, 430, 1336-1349.	2.0	7
377	Elastin-like Peptide in Confinement: FT-IR and NMR T1 Relaxation Data. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1239-1261.	1.4	7
378	Hidden intermediates in Mango III RNA aptamer folding revealed by pressure perturbation. Biophysical Journal, 2022, 121, 421-429.	0.2	7

#	Article	IF	CITATIONS
379	High-pressure 2D NOESY experiments on phospholipid vesicles. Journal of Magnetic Resonance, 1990, 87, 536-547.	0.5	6
380	Survival of polyanions in expanded liquid Zintl alloys. Journal of Non-Crystalline Solids, 1996, 205-207, 66-70.	1.5	6
381	Use of the Voronoi polyhedra method for analyzing short-range-order of liquid cesium and its reproducibility in reverse Monte Carlo modeling. Journal of Non-Crystalline Solids, 1999, 250-252, 40-44.	1.5	6
382	Effect of temperature on the structure and electronic properties of the liquid alloy K–Sb. Journal of Non-Crystalline Solids, 1999, 250-252, 245-249.	1.5	6
383	Structure of water confined in the gyroid cubic phase of the lipid monoelaidin. Journal of Molecular Liquids, 2002, 98-99, 285-293.	2.3	6
384	Stability of Proteins Confined in MCM-48 Mesoporous Molecular Sieves – The Effects of pH, Temperature and Co-solvents. Zeitschrift Fur Physikalische Chemie, 2007, 221, 139-154.	1.4	6
385	Composition Fluctuations in Phospholipid-Sterol Vesicles – a Small-angle Neutron Scattering Study. Zeitschrift Fur Physikalische Chemie, 2008, 222, 1679-1692.	1.4	6
386	Conformational Substates of Amyloidogenic hIAPP Revealed by High Pressure NMR Spectroscopy. ChemistrySelect, 2016, 1, 3239-3243.	0.7	6
387	Exploring the effects of temperature and pressure on the structure and stability of a small RNA hairpin. Biophysical Chemistry, 2017, 231, 161-166.	1.5	6
388	Characterization of the Spatial Organization of Raf Isoforms Interacting with K-Ras4B in the Lipid Membrane. Langmuir, 2020, 36, 5944-5953.	1.6	6
389	Structural responses of model biomembranes to Mars-relevant salts. Physical Chemistry Chemical Physics, 2021, 23, 14212-14223.	1.3	6
390	Neutron diffraction studies on expanded liquid Csî—,Tl. Physica B: Condensed Matter, 1997, 234-236, 367-369.	1.3	5
391	Pressure Perturbation Calorimetric Studies on Phospholipid-Sterol Mixtures. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2008, 63, 769-778.	0.3	5
392	Influence of membrane lipid composition on the activity of functionally reconstituted LmrA under high hydrostatic pressure. High Pressure Research, 2009, 29, 344-357.	0.4	5
393	Influence of membrane organization on the dimerization ability of ToxR fromPhotobacterium profundumunder high hydrostatic pressure. High Pressure Research, 2009, 29, 431-442.	0.4	5
394	19. High-Pressure Biochemistry and Biophysics. , 2013, , 607-648.		5
395	Pressure Effects on the Intermolecular Interaction Potential of Condensed Protein Solutions. Sub-Cellular Biochemistry, 2015, 72, 151-176.	1.0	5
396	Impact of kilobar pressures on ultrafast triazene and thiacyanine photodynamics. Physical Chemistry Chemical Physics, 2018, 20, 18169-18175.	1.3	5

#	Article	IF	CITATIONS
397	Dissociation of the Signaling Protein Kâ€Ras4B from Lipid Membranes Induced by a Molecular Tweezer. Chemistry - A European Journal, 2019, 25, 9827-9833.	1.7	5
398	Liquid droplets of protein LAF1 provide a vehicle to regulate storage of the signaling protein K-Ras4B and its transport to the lipid membrane. Physical Chemistry Chemical Physics, 2021, 23, 5370-5375.	1.3	5
399	Perchlorate salts confer psychrophilic characteristics in α-chymotrypsin. Scientific Reports, 2021, 11, 16523.	1.6	5
400	Impact of the number of rhamnose moieties of rhamnolipids on the structure, lateral organization and morphology of model biomembranes. Soft Matter, 2021, 17, 3191-3206.	1.2	5
401	The Transition to the Metallic State in Alkali and Low-Z Fluids. Zeitschrift Fur Physikalische Chemie, 2003, 217, 795-802.	1.4	5
402	Alkanes as Membrane Regulators of the Response of Early Membranes to Extreme Temperatures. Life, 2022, 12, 445.	1.1	5
403	High Pressure Effects in Molecular Bioscience. , 2005, , 29-82.		4
404	Editorial: The Complex Nature of Water at Molecular Interfaces. ChemPhysChem, 2008, 9, 2635-2636.	1.0	4
405	Binding of Vinculin to Lipid Membranes in Its Inhibited and Activated States. Biophysical Journal, 2016, 111, 1444-1453.	0.2	4
406	Toward Extreme Biophysics: Deciphering the Infrared Response of Biomolecular Solutions at High Pressures. Angewandte Chemie, 2016, 128, 9686-9690.	1.6	4
407	Near-Surface and Bulk Behavior of Bicontinuous Microemulsions under High-Pressure Conditions. Journal of Physical Chemistry B, 2016, 120, 7148-7153.	1.2	4
408	Lipid Phase Control and Secondary Structure of Viral Fusion Peptides Anchored in Monoolein Membranes. Journal of Physical Chemistry B, 2017, 121, 8492-8502.	1.2	4
409	Lateral Organization of Host Heterogeneous Raftâ€like Membranes Altered by the Myristoyl Modification of Tyrosine Kinase c‧rc. Angewandte Chemie, 2017, 129, 10647-10651.	1.6	4
410	Effects of Cosolvents and Macromolecular Crowding on the Phase Transitions and Temperature-Pressure Stability of Chiral and Racemic Poly-Lysine. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1111-1125.	1.4	4
411	Probing Colocalization of Nâ€Ras and Kâ€Ras4B Lipoproteins in Model Biomembranes. ChemBioChem, 2019, 20, 1190-1195.	1.3	4
412	Stability of the chaperonin system GroEL–GroES under extreme environmental conditions. Physical Chemistry Chemical Physics, 2020, 22, 3734-3743.	1.3	4
413	Temperature- and Pressure-induced Unfolding of α-Chymotrypsin. , 2003, , 117-120.		4
414	Experimental determination of the depolarized interaction-induced light scattering spectrum of mercury vapour at T = 793 K. Journal of Non-Crystalline Solids, 1993, 156-158, 663-666.	1.5	3

#	Article	IF	CITATIONS
415	High pressure effects on the structure and mesophase behaviour of supramolecular lipid aggregates and model membrane systems. Progress in Biotechnology, 1996, 13, 21-28.	0.2	3
416	Enzymes in membrane-like surfactant-based media: perspectives for pressure regulation. Progress in Biotechnology, 2002, 19, 159-165.	0.2	3
417	Thermotropic and piezotropic phase behaviour of phospholipids in propanediols and water. Chemical Physics Letters, 2003, 371, 670-674.	1.2	3
418	Alteration of the Conformational Dynamics of a DNA Hairpin by α‣ynuclein in the Presence of Aqueous Twoâ€Phase Systems. Chemistry - A European Journal, 2020, 26, 10987-10991.	1.7	3
419	Non-Polar Lipids as Regulators of Membrane Properties in Archaeal Lipid Bilayer Mimics. International Journal of Molecular Sciences, 2021, 22, 6087.	1.8	3
420	Ions in the Deep Subsurface of Earth, Mars, and Icy Moons: Their Effects in Combination with Temperature and Pressure on tRNA–Ligand Binding. International Journal of Molecular Sciences, 2021, 22, 10861.	1.8	3
421	The C-terminus of the GKY20 antimicrobial peptide, derived from human thrombin, plays a key role in its membrane perturbation capability. Physical Chemistry Chemical Physics, 2022, 24, 7994-8002.	1.3	3
422	Structural Responses of Nucleic Acids to Mars-Relevant Salts at Deep Subsurface Conditions. Life, 2022, 12, 677.	1.1	3
423	Flüssige Metalle. Chemie in Unserer Zeit, 1988, 22, 185-192.	0.1	2
424	Optical Reflectivity Study of the Approach to the Metal-Nonmetal Transition in Na-NH ₃ Solutions*. Zeitschrift Fur Physikalische Chemie, 1988, 156, 207-211.	1.4	2
425	Neutron diffraction and computer modeling studies of expanded liquid Cs-Tl. Journal of Chemical Physics, 1999, 110, 497-500.	1.2	2
426	Static structure factor and pair correlation function of liquid K–Bi over a temperature interval of 1100K. Physica B: Condensed Matter, 2000, 276-278, 425-426.	1.3	2
427	Islet amyloid polypeptide and high hydrostatic pressure: towards an understanding of the fibrillization process. Journal of Physics: Conference Series, 2008, 121, 112002.	0.3	2
428	Membrane Interacting Peptides - Towards the Understanding of Biological Membranes. Biophysical Chemistry, 2010, 150, 1.	1.5	2
429	Pressure-A Gateway to Fundamental Insights into Protein Solvation, Dynamics, and Function. ChemPhysChem, 2015, 16, 3539-3539.	1.0	2
430	Modulation of the Polymerization Kinetics of α/β-Tubulin by Osmolytes and Macromolecular Crowding. ChemPhysChem, 2017, 18, 174-174.	1.0	2
431	Interaction of KRas4B protein with C6-ceramide containing lipid model membranes. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1008-1014.	1.4	2
432	On the extraordinary pressure stability of the <i>Thermotoga maritima</i> arginine binding protein and its folded fragments – a high-pressure FTIR spectroscopy study. Physical Chemistry Chemical Physics, 2020, 22, 11244-11248.	1.3	2

#	Article	IF	CITATIONS
433	Exploring Enzymatic Activity in Multiparameter Space: Cosolvents, Macromolecular Crowders and Pressure. ChemSystemsChem, 2021, 3, e2000029.	1.1	2
434	Pressure Effects on Lyotropic Lipid Mesophases and Model Membrane Systems — Effects on the Structure, Phase Behaviour and Kinetics of Phase Transformations. , 1999, , 369-403.		2
435	High-Pressure Effects on the Structure and Phase Behavior of Model Membrane Systems. , 1996, , .		2
436	Bipolar Imidazolium-Based Lipid Analogues for Artificial Archaeosomes. Langmuir, 2021, 37, 11996-12006.	1.6	2
437	Kinetics and mechanisms of lamellar and non-lamellar phase transitions in aqueous lipid dispersions. Progress in Biotechnology, 1996, 13, 181-184.	0.2	1
438	Physikalische Chemie 1996. Nachrichten Aus Der Chemie, 1997, 45, 188-197.	0.0	1
439	Pressure-induced phase changes of cubic monoolein - Cytochrome C mesophases. High Pressure Research, 2003, 23, 101-104.	0.4	1
440	Interfacial water in chemistry and biology. Physical Chemistry Chemical Physics, 2004, 6, E5.	1.3	1
441	Effect of Temperature on the Structural and Hydrational Properties of Human Islet Amyloid Polypeptide in Water. Biophysical Journal, 2009, 96, 302a.	0.2	1
442	Unraveling the Pressure Effect on Nucleation Processes of Amyloidogenic Proteins. ChemPhysChem, 2010, 11, 2016-2020.	1.0	1
443	Polymorphism, Metastable Species and Interconversion. , 2014, , 373-386.		1
444	Packing Effects of N-Ras Binding to a DOPC Membrane – a Neutron Reflectivity and TIRF Spectroscopy High-Pressure Study. Zeitschrift Fur Physikalische Chemie, 2014, 228, 969-986.	1.4	1
445	UNC119A Decreases the Membrane Binding of Myristoylated câ€Src. ChemBioChem, 2018, 19, 1482-1487.	1.3	1
446	Editorial "High-pressure biophysical chemistry: Exploring the dynamical landscape of biomolecular systems by pressure perturbation― Biophysical Chemistry, 2020, 258, 106328.	1.5	1
447	Exploring the Energy and Conformational Landscape of Biomolecules Under Extreme Conditions. NATO Science for Peace and Security Series B: Physics and Biophysics, 2010, , 573-590.	0.2	1
448	High-Pressure Vibrational Spectroscopy Studies of the Folding, Misfolding and Amyloidogenesis of Proteins. Biological and Medical Physics Series, 2012, , 117-146.	0.3	1
449	Suppression of Liquidâ€Liquid Phase Separation and Aggregation of Antibodies by Modest Pressure Application. Chemistry - A European Journal, 0, , .	1.7	1
450	High temperature—high pressure neutron scattering experiments on expanded liquid alkali metals. High Pressure Research, 1990, 4, 549-551.	0.4	0

#	Article	IF	CITATIONS
451	High pressure neutron-scattering experiments on phospholipid model biomembranes. High Pressure Research, 1990, 5, 755-757.	0.4	0
452	High pressure 1D and 2D NMR experiments on model biomembranes. High Pressure Research, 1990, 5, 758-760.	0.4	0
453	Literaturkarussell. Chemie. Chemie in Unserer Zeit, 1995, 29, VIII-XI.	0.1	0
454	Polyanionic clustering and electronic properties of the expanded equiatomic liquid alloy cesiumâ€lead. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1998, 102, 1259-1265.	0.9	0
455	Temperature- and pressure-induced unfolding of ubiquitin. Journal of Physics Condensed Matter, 2002, 14, 11485-11488.	0.7	0
456	Physikalische Chemie 2001. Nachrichten Aus Der Chemie, 2002, 50, 336-345.	0.0	0
457	Pressure effects on the structure and phase behavior of phospholipid-gramicidin bilayer membranes. Progress in Biotechnology, 2002, 19, 131-138.	0.2	0
458	Editorial: Transdisziplinaritä— eine neue Herausforderung für die Wissenschaft. Chemie in Unserer Zeit, 2002, 36, 279-279.	0.1	0
459	Preface (Special Issue to the 70th anniversary of Prof. Dr. Dr. hc. mult. F. Hensel). Zeitschrift Fur Physikalische Chemie, 2003, 217, 771-773.	1.4	0
460	"Das Neue geschieht an GrenzflÃ e hen― Chemie in Unserer Zeit, 2008, 42, 63-63.	0.1	0
461	The Effect of Incorporation of Gramicidin on the Translational Lipid Diffusion in Bicontinuous Cubic Monoolein/Water Mesophases. Zeitschrift Fur Physikalische Chemie, 2009, 223, 1063-1077.	1.4	0
462	Interactions of Lipidated Ras Proteins With Raft Membranes Studied By Time-Lapse Atomic Force Microscopy. Biophysical Journal, 2010, 98, 19a-20a.	0.2	0
463	The Effect of AÎ ² on IAPP Aggregation at an Isolated Î ² -Cell Membrane. Biophysical Journal, 2012, 102, 440a.	0.2	0
464	Untersuchung der Proteinadsorption wĤrend der ZerschĤmung mittels Infrarot-Reflexions-Absorptions-Spektroskopie. Chemie-Ingenieur-Technik, 2012, 84, 1291-1291.	0.4	0
465	Special Issue Commemorating the Paper "The Diffraction of X-rays by Crystals―by William Lawrence Bragg (ZPC, 104, 337–348 (1923); Nobel Lecture, September 6, 1922). Zeitschrift Fur Physikalische Chemie, 2014, 228, 953-956.	1.4	0
466	Minima and Barriers on the Pressure-Temperature Free Energy Landscape of Phosphoglycerate Kinase. Biophysical Journal, 2014, 106, 259a-260a.	0.2	0
467	Titelbild: Modulation of the Thermodynamic Signatures of an RNA Thermometer by Osmolytes and Salts (Angew. Chem. 9/2017). Angewandte Chemie, 2017, 129, 2255-2255.	1.6	0
468	Exploring the conformational space and dynamics of biomolecular systems using pressure perturbation. Journal of Physics: Conference Series, 2017, 950, 022002.	0.3	0

#	Article	IF	CITATIONS
469	Viral Fusion Peptides Incorporated in Monoolein Membranes: Secondary Structure and Lipid Phase Behavior. Biophysical Journal, 2018, 114, 603a.	0.2	0
470	Comparison of Calmodulin Ligand Interactions by High Pressure X-Ray and Neutron Scattering. Biophysical Journal, 2018, 114, 419a.	0.2	0
471	Cosolvent and Crowding Effects on the Temperature―and Pressureâ€Dependent Dissociation Process of the α/βâ€Tubulin Heterodimer. ChemPhysChem, 2019, 20, 1068-1068.	1.0	0
472	Frontispiece: Temperature, Hydrostatic Pressure, and Osmolyte Effects on Liquid–Liquid Phase Separation in Protein Condensates: Physical Chemistry and Biological Implications. Chemistry - A European Journal, 2019, 25, .	1.7	0
473	The Role of Matrix Structure in Pressure Regulation of Enzymes Encapsulated in Ternary Surfactant-Water-Organic Solvent Systems. , 2003, , 235-239.		0
474	Neutron and X-Ray Scattering of Fluids at High Pressure and High Temperature. , 1993, , 167-199.		0
475	The Depolarized Interaction Induced Light Scattering Spectrum of Mercury Vapor at Low Density , 1995, , 357-367.		0
476	Neutron Diffraction Studies of Liquid Alloys up to High Temperatures and Pressures. , 1999, , 151-185.		0
477	Molekulare Biophysik. Zeitschrift Fur Physikalische Chemie, 1999, 213, 221-222.	1.4	0
478	Pressure Perturbation: A Prime Tool to Study Conformational Substates and Volume Fluctuations of Biomolecular Assemblies. , 2016, , 29-64.		0