
Lucia Cavalca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4077144/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biology and Biochemistry, 2008, 40, 74-84.	8.8	364
2	Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiology Ecology, 2005, 52, 153-162.	2.7	175
3	Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics. Systematic and Applied Microbiology, 2010, 33, 154-164.	2.8	121
4	Microbial transformations of arsenic: perspectives for biological removal of arsenic from water. Future Microbiology, 2013, 8, 753-768.	2.0	103
5	Influences of dissolved oxygen concentration on biocathodic microbial communities in microbial fuel cells. Bioelectrochemistry, 2017, 116, 39-51.	4.6	101
6	Assessment of bacterial community structure in a long-term copper-polluted ex-vineyard soil. Microbiological Research, 2008, 163, 671-683.	5.3	87
7	Rice Paddy Nitrospirae Carry and Express Genes Related to Sulfate Respiration: Proposal of the New Genus "Candidatus Sulfobium― Applied and Environmental Microbiology, 2018, 84, .	3.1	83
8	Detection of genes for alkane and naphthalene catabolism in <i>Rhodococcus</i> sp. strain 1BN. Environmental Microbiology, 2000, 2, 572-577.	3.8	54
9	A study of microbial communities on terracotta separator and on biocathode of air breathing microbial fuel cells. Bioelectrochemistry, 2018, 120, 18-26.	4.6	48
10	Arsenic transforming abilities of groundwater bacteria and the combined use of Aliihoeflea sp. strain 2WW and goethite in metalloid removal. Journal of Hazardous Materials, 2014, 269, 89-97.	12.4	47
11	Bioremediation of polyaromatic hydrocarbon contaminated soils by native microflora and bioaugmentation with Sphingobium chlorophenolicum strain C3R: A feasibility study in solid- and slurry-phase microcosms. International Biodeterioration and Biodegradation, 2011, 65, 191-197.	3.9	46
12	Arsenic in the Soil Environment: Mobility and Phytoavailability. Environmental Engineering Science, 2015, 32, 551-563.	1.6	46
13	Arsenite Oxidation in Ancylobacter dichloromethanicus As3-1b Strain: Detection of Genes Involved in Arsenite Oxidation and CO2 Fixation. Current Microbiology, 2012, 65, 212-218.	2.2	45
14	Impact of glucose on microbial community of a soil containing pyrite cinders: Role of bacteria in arsenic mobilization under submerged condition. Soil Biology and Biochemistry, 2010, 42, 699-707.	8.8	41
15	Rhizospheric iron and arsenic bacteria affected by water regime: Implications for metalloid uptake by rice. Soil Biology and Biochemistry, 2017, 106, 129-137.	8.8	41
16	Distribution of catabolic pathways in some hydrocarbon-degrading bacteria from a subsurface polluted soil. Research in Microbiology, 2000, 151, 877-887.	2.1	39
17	Influence of water management on the active root-associated microbiota involved in arsenic, iron, and sulfur cycles in rice paddies. Applied Microbiology and Biotechnology, 2017, 101, 6725-6738.	3.6	32
18	Bioelectrochemical Nitrogen fixation (e-BNF): Electro-stimulation of enriched biofilm communities drives autotrophic nitrogen and carbon fixation. Bioelectrochemistry, 2019, 125, 105-115.	4.6	28

LUCIA CAVALCA

#	Article	IF	CITATIONS
19	Exploring Biodiversity and Arsenic Metabolism of Microbiota Inhabiting Arsenic-Rich Groundwaters in Northern Italy. Frontiers in Microbiology, 2019, 10, 1480.	3.5	26
20	Rhizobacterial communities associated with spontaneous plant species in long-term arsenic contaminated soils. World Journal of Microbiology and Biotechnology, 2015, 31, 735-746.	3.6	20
21	Amplified ribosomal DNA restriction analysis for the characterization of Azotobacteraceae: a contribution to the study of these free-living nitrogen-fixing bacteria. Journal of Microbiological Methods, 2004, 57, 197-206.	1.6	19
22	Influence of microorganisms on arsenic mobilization and speciation in a submerged contaminated soil: Effects of citrate. Applied Soil Ecology, 2011, 49, 99-106.	4.3	17
23	Phylogenetic Structure and Metabolic Properties of Microbial Communities in Arsenic-Rich Waters of Geothermal Origin. Frontiers in Microbiology, 2017, 8, 2468.	3.5	17
24	Biodegradation of phenanthrene and analysis of degrading cultures in the presence of a model organo-mineral matrix and of a simulated NAPL phase. Biodegradation, 2008, 19, 1-13.	3.0	15
25	Characterization of As(III) oxidizing Achromobacter sp. strain N2: effects on arsenic toxicity and translocation in rice. Annals of Microbiology, 2018, 68, 295-304.	2.6	15
26	Aerobic biodegradation of propylene glycol by soil bacteria. Biodegradation, 2013, 24, 603-613.	3.0	14
27	Bacterial Diversity and Bioremediation Potential of the Highly Contaminated Marine Sediments at El-Max District (Egypt, Mediterranean Sea). BioMed Research International, 2015, 2015, 1-17.	1.9	14
28	Genotypic Characterization and Phylogenetic Relations of Pseudomonas sp. (Formerly P. stutzeri) OX1. Current Microbiology, 2006, 52, 395-399.	2.2	13
29	Co-metabolism of di- and trichlorobenzoates in a 2-chlorobenzoate-degrading bacterial culture: Effect of the position and number of halo-substituents. International Biodeterioration and Biodegradation, 2008, 62, 57-64.	3.9	13
30	Exposure to different arsenic species drives the establishment of iron- and sulfur-oxidizing bacteria on rice root iron plaques. World Journal of Microbiology and Biotechnology, 2019, 35, 117.	3.6	13
31	Chlorophenol Removal from Soil Suspensions: Effects of a Specialised Microbial Inoculum and a Degradable Analogue. Biodegradation, 2004, 15, 153-160.	3.0	12
32	Enzymatic and genetic profiles in environmental strains grown on polycyclic aromatic hydrocarbons. Antonie Van Leeuwenhoek, 2007, 91, 315-325.	1.7	12
33	Rhizosphere colonization and arsenic translocation in sunflower (Helianthus annuus L.) by arsenate reducing Alcaligenes sp. strain Dhal-L. World Journal of Microbiology and Biotechnology, 2013, 29, 1931-1940.	3.6	12
34	Adaptation of Microbial Communities to Environmental Arsenic and Selection of Arsenite-Oxidizing Bacteria From Contaminated Groundwaters. Frontiers in Microbiology, 2021, 12, 634025.	3.5	12
35	Characterization of the arsenite oxidizer Aliihoeflea sp. strain 2WW and its potential application in the removal of arsenic from groundwater in combination with Pf-ferritin. Antonie Van Leeuwenhoek, 2015, 108, 673-684.	1.7	10
36	Transcriptomic Analysis of Two Thioalkalivibrio Species Under Arsenite Stress Revealed a Potential Candidate Gene for an Alternative Arsenite Oxidation Pathway. Frontiers in Microbiology, 2019, 10, 1514.	3.5	9

LUCIA CAVALCA

#	Article	IF	CITATIONS
37	Effectiveness of various sorbents and biological oxidation in the removal of arsenic species from groundwater. Environmental Chemistry, 2014, 11, 558.	1.5	8
38	Draft Genome Sequence of the Arsenite-Oxidizing Strain Aliihoeflea sp. 2WW, Isolated from Arsenic-Contaminated Groundwater. Genome Announcements, 2013, 1, .	0.8	7
39	Evolution of a degradative bacterial consortium during the enrichment of naphtha solvent. Journal of Applied Microbiology, 2000, 88, 1009-1018.	3.1	5
40	Effectiveness of Permeable Reactive Bio-Barriers for Bioremediation of an Organohalide-Polluted Aquifer by Natural-Occurring Microbial Community. Water (Switzerland), 2021, 13, 2442.	2.7	4
41	Plant nutrients recovery from agro-food wastewaters using microbial electrochemical technologies based on porous biocompatible materials. Journal of Environmental Chemical Engineering, 2022, 10, 107453.	6.7	3
42	Oxygenase systems in an oligotrophic bacterial community of a subsurface water polluted by btex. Developments in Soil Science, 2002, 28, 363-375.	0.5	0