
Amanda J Morris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4077080/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reversible Dissociation for Effective Storage of Diborane Gas within the UiO-66-NH2 Metal–Organic Framework. ACS Applied Materials & Interfaces, 2022, , .	8.0	4
2	Green-light-responsive metal–organic frameworks for colorectal cancer treatment. Chemical Communications, 2022, 58, 5225-5228.	4.1	8
3	An Aluminum-Based Metal–Organic Cage for Cesium Capture. Inorganic Chemistry, 2022, 61, 6604-6611.	4.0	7
4	Aqueous-Phase Destruction of Nerve-Agent Simulants at Copper Single Atoms in UiO-66. Inorganic Chemistry, 2022, 61, 8585-8591.	4.0	5
5	Photoelectrochemical alcohol oxidation by mixed-linker metal–organic frameworks. Faraday Discussions, 2021, 225, 371-383.	3.2	20
6	Modelling drug adsorption in metal–organic frameworks: the role of solvent. RSC Advances, 2021, 11, 17064-17071.	3.6	16
7	In Situ Nuclear Magnetic Resonance Investigation of Molecular Adsorption and Kinetics in Metal–Organic Framework UiO-66. Journal of Physical Chemistry Letters, 2021, 12, 892-899.	4.6	10
8	Nanoconfinement and mass transport in metal–organic frameworks. Chemical Society Reviews, 2021, 50, 11530-11558.	38.1	67
9	Design Strategies for Enhanced Conductivity in Metal–Organic Frameworks. ACS Central Science, 2021, 7, 445-453.	11.3	72
10	Understanding the Mechanical Reinforcement of Metal–Organic Framework–Polymer Composites: The Effect of Aspect Ratio. ACS Applied Materials & Interfaces, 2021, 13, 51894-51905.	8.0	6
11	Mechanistic Investigations into and Control of Anisotropic Metal–Organic Framework Growth. Inorganic Chemistry, 2021, 60, 10439-10450.	4.0	6
12	Role of a 3D Structure in Energy Transfer in Mixed-Ligand Metal–Organic Frameworks. Journal of Physical Chemistry C, 2021, 125, 22998-23010.	3.1	15
13	Defect Level and Particle Size Effects on the Hydrolysis of a Chemical Warfare Agent Simulant by UiO-66. Inorganic Chemistry, 2021, 60, 16378-16387.	4.0	16
14	Investigation into dual emission of a cyclometalated iridium complex: The role of ion-pairing. Journal of Photochemistry and Photobiology, 2021, 8, 100084.	2.5	5
15	Characterization of gas permeation in the pores of Zn(II)-based metal organic framework (MOF)/polymer composite membranes. Separation Science and Technology, 2020, 55, 2604-2614.	2.5	3
16	Design Rules for Efficient Charge Transfer in Metal–Organic Framework Films: The Pore Size Effect. Journal of Physical Chemistry Letters, 2020, 11, 702-709.	4.6	64
17	Role of Spin–Orbit Coupling in Long Range Energy Transfer in Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 20434-20443.	13.7	32
18	Frontiers in hybrid and interfacial materials chemistry research. MRS Bulletin, 2020, 45, 951-964.	3.5	6

Amanda J Morris

#	Article	IF	CITATIONS
19	Nickel(<scp>ii</scp>)-modified covalent-organic framework film for electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF). Chemical Communications, 2020, 56, 14361-14364.	4.1	38
20	The effect of inner-sphere reorganization on charge separated state lifetimes at sensitized TiO2 interfaces. Journal of Chemical Physics, 2020, 153, 124711.	3.0	1
21	PCN-222 Metal–Organic Framework Nanoparticles with Tunable Pore Size for Nanocomposite Reverse Osmosis Membranes. ACS Applied Materials & Interfaces, 2020, 12, 15765-15773.	8.0	71
22	J-dimer emission in interwoven metal–organic frameworks. Chemical Science, 2020, 11, 4391-4396.	7.4	11
23	Photovoltaics and bio-inspired light harvesting: general discussion. Faraday Discussions, 2019, 216, 269-300.	3.2	0
24	Independent Quantification of Electron and Ion Diffusion in Metallocene-Doped Metal–Organic Frameworks Thin Films. Journal of the American Chemical Society, 2019, 141, 11947-11953.	13.7	57
25	Light harvesting and energy transfer in a porphyrin-based metal organic framework. Faraday Discussions, 2019, 216, 174-190.	3.2	46
26	Molecular-Level Insight into CO ₂ Adsorption on the Zirconium-Based Metal–Organic Framework, UiO-66: A Combined Spectroscopic and Computational Approach. Journal of Physical Chemistry C, 2019, 123, 13731-13738.	3.1	34
27	Photovoltaic Devices: Fullerene Polymer Complex Inducing Dipole Electric Field for Stable Perovskite Solar Cells (Adv. Funct. Mater. 12/2019). Advanced Functional Materials, 2019, 29, 1970078.	14.9	2
28	Synthesis and Defect Characterization of Phase-Pure Zr-MOFs Based on Meso-tetracarboxyphenylporphyrin. Inorganic Chemistry, 2019, 58, 5145-5153.	4.0	70
29	Fullerene Polymer Complex Inducing Dipole Electric Field for Stable Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1804419.	14.9	42
30	Geometry and energetics of CO adsorption on hydroxylated UiO-66. Physical Chemistry Chemical Physics, 2019, 21, 5078-5085.	2.8	17
31	Insights into the Application of Metal-Organic Frameworks for Molecular Photovoltaics. , 2019, , 383-407.		0
32	Improving the Efficiency of the Mn ^{2+/3+} Couple in Quantum Dot Solar Cells: The Role of Spin Crossover. Journal of Physical Chemistry C, 2018, 122, 14135-14149.	3.1	6
33	Machine-Learning Energy Gaps of Porphyrins with Molecular Graph Representations. Journal of Physical Chemistry A, 2018, 122, 4571-4578.	2.5	40
34	A New Class of Metal-Cyclam-Based Zirconium Metal–Organic Frameworks for CO ₂ Adsorption and Chemical Fixation. Journal of the American Chemical Society, 2018, 140, 993-1003.	13.7	176
35	Energy Transfer in Metal-Organic Frameworks. Series on Chemistry, Energy and the Environment, 2018, , 581-654.	0.3	6
36	Insight into Metal–Organic Framework Reactivity: Chemical Water Oxidation Catalyzed by a [Ru(tpy)(dcbpy)(OH ₂)] ²⁺ â€Modified UiOâ€67. ChemSusChem, 2018, 11, 464-471.	6.8	31

Amanda J Morris

#	Article	IF	CITATIONS
37	Synthesis, characterization, and luminescent properties of two new Zr(IV) metal–organic frameworks based on anthracene derivatives. Canadian Journal of Chemistry, 2018, 96, 875-880.	1.1	7
38	Ruthenium(<scp>ii</scp>)-polypyridyl doped zirconium(<scp>iv</scp>) metal–organic frameworks for solid-state electrochemiluminescence. Dalton Transactions, 2018, 47, 16807-16812.	3.3	23
39	Insights into CO2 adsorption and chemical fixation properties of VPI-100 metal–organic frameworks. Journal of Materials Chemistry A, 2018, 6, 22195-22203.	10.3	17
40	Nanoporous highly crosslinked polymer networks with covalently bonded amines for CO2 capture. Polymer, 2018, 154, 55-61.	3.8	21
41	Characterization of Undercoordinated Zr Defect Sites in UiO-66 with Vibrational Spectroscopy of Adsorbed CO. Journal of Physical Chemistry C, 2018, 122, 14582-14589.	3.1	52
42	Mechanism and Kinetics of Hydrogen Peroxide Decomposition on Platinum Nanocatalysts. ACS Applied Materials & Interfaces, 2018, 10, 21224-21234.	8.0	94
43	The role of redox hopping in metal–organic framework electrocatalysis. Chemical Communications, 2018, 54, 6965-6974.	4.1	127
44	Photo-triggered release of 5-fluorouracil from a MOF drug delivery vehicle. Chemical Communications, 2018, 54, 7617-7620.	4.1	92
45	Benzene, Toluene, and Xylene Transport through UiO-66: Diffusion Rates, Energetics, and the Role of Hydrogen Bonding. Journal of Physical Chemistry C, 2018, 122, 16060-16069.	3.1	60
46	Sensitized photon upconversion in anthracene-based zirconium metal–organic frameworks. Chemical Communications, 2018, 54, 7798-7801.	4.1	40
47	Cargo delivery on demand from photodegradable MOF nano-cages. Dalton Transactions, 2017, 46, 4917-4922.	3.3	41
48	Electrochemical Water Oxidation by a Catalyst-Modified Metal-Organic Framework Thin Film. ChemSusChem, 2017, 10, 469-469.	6.8	4
49	Light-harvesting and energy transfer in ruthenium(II)-polypyridyl doped zirconium(IV) metal-organic frameworks: A look toward solar cell applications. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 344, 64-77.	3.9	55
50	Study of Electrocatalytic Properties of Metal–Organic Framework PCN-223 for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2017, 9, 33539-33543.	8.0	143
51	Gas sorption and kinetics of CO 2 sorption and transport in a polymorphic microporous MOF with open Zn (II) coordination sites. Journal of CO2 Utilization, 2017, 19, 40-48.	6.8	51
52	Systematic investigation of the excited-state properties of anthracene-dicarboxylic acids. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 337, 207-215.	3.9	17
53	Electrochemical Water Oxidation by a Catalystâ€Modified Metal–Organic Framework Thin Film. ChemSusChem, 2017, 10, 514-522.	6.8	114
54	Proton-Coupled Electron Transport in Anthraquinone-Based Zirconium Metal–Organic Frameworks. Inorganic Chemistry, 2017, 56, 13741-13747.	4.0	23

#	Article	IF	CITATIONS
55	Characterizing Defects in a UiO-AZB Metal–Organic Framework. Inorganic Chemistry, 2017, 56, 13777-13784.	4.0	20
56	Charge Rectification at Molecular Nanocrystalline TiO ₂ Interfaces: Overlap Optimization To Promote Vectorial Electron Transfer. Journal of Physical Chemistry C, 2016, 120, 27173-27181.	3.1	3
57	Nanoparticulate Ni(OH) ₂ Films Synthesized from Macrocyclic Nickel(II) Cyclam for Hydrogen Production in Microbial Electrolysis Cells. Journal of the Electrochemical Society, 2016, 163, F437-F442.	2.9	13
58	Cooperative electrochemical water oxidation by Zr nodes and Ni–porphyrin linkers of a PCN-224 MOF thin film. Journal of Materials Chemistry A, 2016, 4, 16818-16823.	10.3	99
59	Ruthenium(<scp>ii</scp>)-polypyridyl zirconium(<scp>iv</scp>) metal–organic frameworks as a new class of sensitized solar cells. Chemical Science, 2016, 7, 719-727.	7.4	129
60	Concentration Dependent Dimensionality of Resonance Energy Transfer in a Postsynthetically Doped Morphologically Homologous Analogue of UiO-67 MOF with a Ruthenium(II) Polypyridyl Complex. Journal of the American Chemical Society, 2015, 137, 8161-8168.	13.7	120
61	Thermodynamic Study of CO ₂ Sorption by Polymorphic Microporous MOFs with Open Zn(II) Coordination Sites. Inorganic Chemistry, 2015, 54, 4328-4336.	4.0	26
62	Solvothermal Preparation of an Electrocatalytic Metalloporphyrin MOF Thin Film and its Redox Hopping Charge-Transfer Mechanism. Journal of the American Chemical Society, 2014, 136, 2464-2472.	13.7	289
63	Solvothermal Growth and Photophysical Characterization of a Ruthenium(II) Tris(2,2′-Bipyridine)-Doped Zirconium UiO-67 Metal Organic Framework Thin Film. Journal of Physical Chemistry C, 2014, 118, 14200-14210.	3.1	59
64	Mn ^{II/III} Complexes as Promising Redox Mediators in Quantum-Dot-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 15061-15067.	8.0	13
65	Rethinking Band Bending at the P3HT–TiO ₂ Interface. ACS Applied Materials & Interfaces, 2014, 6, 4394-4401.	8.0	18
66	Photophysical Characterization of a Ruthenium(II) Tris(2,2′-bipyridine)-Doped Zirconium UiO-67 Metal–Organic Framework. Journal of Physical Chemistry C, 2014, 118, 8803-8817.	3.1	94
67	Visible light induced photocatalytic activity of Fe ³⁺ /Ti ³⁺ co-doped TiO ₂ nanostructures. RSC Advances, 2014, 4, 18033-18037.	3.6	26
68	Comparative Study of Imidazole and Pyridine Catalyzed Reduction of Carbon Dioxide at Illuminated Iron Pyrite Electrodes. ACS Catalysis, 2012, 2, 1684-1692.	11.2	75
69	Controlling Morphological Parameters of Anodized Titania Nanotubes for Optimized Solar Energy Applications. Materials, 2012, 5, 1890-1909.	2.9	52
70	Non-Nernstian Two-Electron Transfer Photocatalysis at Metalloporphyrin–TiO ₂ Interfaces. Journal of the American Chemical Society, 2011, 133, 16572-16580.	13.7	79
71	Electrocatalytic Carbon Dioxide Activation: The Rateâ€Determining Step of Pyridinium atalyzed CO ₂ Reduction. ChemSusChem, 2011, 4, 191-196.	6.8	149
72	Catalytic conversion of carbon dioxide to methanol and higher order alcohols at a photoelectrochemical interface. Proceedings of SPIE, 2010, , .	0.8	2

#	Article	IF	CITATIONS
73	Using a One-Electron Shuttle for the Multielectron Reduction of CO ₂ to Methanol: Kinetic, Mechanistic, and Structural Insights. Journal of the American Chemical Society, 2010, 132, 11539-11551.	13.7	508
74	Dynamics and Equilibrium of Heme Axial Ligation in Mesoporous Nanocrystalline TiO ₂ Thin Films. Inorganic Chemistry, 2010, 49, 29-37.	4.0	5
75	Molecular Approaches to the Photocatalytic Reduction of Carbon Dioxide for Solar Fuels. Accounts of Chemical Research, 2009, 42, 1983-1994.	15.6	1,129
76	Halide Coordination to Zinc Porphyrin Sensitizers Anchored to Nanocrystalline TiO ₂ . Inorganic Chemistry, 2008, 47, 7681-7685.	4.0	11
77	TiO ₂ Surface Functionalization to Control the Density of States. Journal of Physical Chemistry C, 2008, 112, 18224-18231.	3.1	51
78	Conduction Band Mediated Electron Transfer Across Nanocrystalline TiO2Surfacesâ€. Journal of Physical Chemistry B, 2007, 111, 6822-6828.	2.6	31