
Anouar Hajjaji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4076941/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling of indoor air treatment using an innovative photocatalytic luminous textile: Reactor compactness and mass transfer enhancement. Chemical Engineering Journal, 2022, 430, 132636.	12.7	17
2	Synthesis and Characterization of TiO2 Nanotubes (TiO2-NTs) with Ag Silver Nanoparticles (Ag-NPs): Photocatalytic Performance for Wastewater Treatment under Visible Light. Materials, 2022, 15, 1463.	2.9	13
3	Photocatalytic Activity of Silicon Nanowires Decorated with PbS Nanoparticles Deposited by Pulsed Laser Deposition for Efficient Wastewater Treatment. Materials, 2022, 15, 4970.	2.9	6
4	Enhanced photocatalytic activities of silicon nanowires/graphene oxide nanocomposite: Effect of etching parameters. Journal of Environmental Sciences, 2021, 101, 123-134.	6.1	39
5	Effect of the Helium Background Gas Pressure on the Structural and Optoelectronic Properties of Pulsed-Laser-Deposited PbS Thin Films. Nanomaterials, 2021, 11, 1254.	4.1	5
6	Synthesis and Characterization of TiO2 Nanotubes (TiO2-NTs) Decorated with Platine Nanoparticles (Pt-NPs): Photocatalytic Performance for Simultaneous Removal of Microorganisms and Volatile Organic Compounds. Materials, 2021, 14, 7341.	2.9	4
7	Pulsed-laser-deposited lead sulfide nanoparticles based decoration of porous silicon layer as an effective passivation treatment for multicrystalline silicon. Applied Surface Science, 2020, 505, 144590.	6.1	5
8	Enhancement of photocatalytic and photoelectrochemical properties of TiO2 nanotubes sensitized by SILAR - Deposited PbS nanoparticles. Journal of Materiomics, 2020, 6, 62-69.	5.7	18
9	Correlation between Morphological Structure and Optoelectronic Properties of Al2O3 thin layer coated silicon nanowires. Silicon, 2020, , 1.	3.3	0
10	Simultaneous removal of bacteria and volatile organic compounds on Cu2O-NPs decorated TiO2 nanotubes: Competition effect and kinetic studies. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400, 112722.	3.9	43
11	Photocatalytic indoor/outdoor air treatment and bacterial inactivation on CuxO/TiO2 prepared by HiPIMS on polyester cloth under low intensity visible light. Applied Catalysis B: Environmental, 2019, 259, 118074.	20.2	58
12	Study of TiO2 nanotubes decorated with PbS nanoparticles elaborated by pulsed laser deposition: microstructural, optoelectronic and photoelectrochemical properties. Journal of Materials Science: Materials in Electronics, 2019, 30, 20935-20946.	2.2	9
13	Optimizing the photochemical conversion of UV–vis light of silver-nanoparticles decorated TiO ₂ nanotubes based photoanodes. Nanotechnology, 2018, 29, 015703.	2.6	13
14	Bacterial adhesion and inactivation on Ag decorated TiO2-nanotubes under visible light: Effect of the nanotubes geometry on the photocatalytic activity. Colloids and Surfaces B: Biointerfaces, 2018, 170, 92-98.	5.0	57
15	Enhancing the photoelectrochemical response of TiO2 nanotubes through their nanodecoration by pulsed-laser-deposited Ag nanoparticles. Journal of Applied Physics, 2017, 122, .	2.5	22
16	Optoelectronic and photocatalytic properties of in situ platinum-doped TiO2 films deposited by means of pulsed laser ablation technique. Journal of Materials Science: Materials in Electronics, 2017, 28, 3317-3324.	2.2	9
17	Microstructure and Optical Properties of Pure and Cr-Doped TiO2 Thin Films. SpringerBriefs in Applied Sciences and Technology, 2015, , 35-56.	0.4	0
18	TiO2 Properties and Deposition Techniques. SpringerBriefs in Applied Sciences and Technology, 2015, , 1-14.	0.4	0

Anouar Hajjaji

#	Article	IF	CITATIONS
19	Synthesis and Characterization of TiO2–Cr Thin Films. SpringerBriefs in Applied Sciences and Technology, 2015, , 15-33.	0.4	0
20	Gas Sensors and Photo-Conversion Applications. SpringerBriefs in Applied Sciences and Technology, 2015, , 57-74.	0.4	0
21	TiO2 Photocatalysis. SpringerBriefs in Applied Sciences and Technology, 2015, , 75-84.	0.4	0
22	Photocatalytic activity of Cr-doped TiO2 nanoparticles deposited on porous multicrystalline silicon films. Nanoscale Research Letters, 2014, 9, 543.	5.7	31
23	Cr-Doped TiO ₂ Thin Films Prepared by Means of a Magnetron Co-Sputtering Process: Photocatalytic Application. American Journal of Analytical Chemistry, 2014, 05, 473-482.	0.9	28
24	Stain-etched porous silicon nanostructures for multicrystalline silicon-based solar cells. EPJ Applied Physics, 2012, 57, 21301.	0.7	3
25	Minority carrier lifetime enhancement in multicrystalline silicon. EPJ Applied Physics, 2012, 57, 21302.	0.7	2
26	Minority carrier lifetime enhancement in multicrystalline silicon by means of a dual treatment based on porous silicon and sputter-deposition of TiO2:Cr passivation layers. Applied Surface Science, 2012, 258, 8046-8048.	6.1	8
27	Influence of porous silicon passivation layer and TiO ₂ coating on the optoelectronic properties of multicrystalline Si substrate. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2141-2144.	0.8	5
28	Effect of Cr incorporation on the structural and optoelectronic properties of TiO2:Cr deposited by means of a magnetron co-sputtering process. Applied Surface Science, 2011, 257, 10351-10357.	6.1	31
29	Dry air effects on the copper oxides sensitive layers formation for ethanol vapor detection. Applied Surface Science, 2011, 257, 9941-9945.	6.1	16
30	Structural, Optical and Sensing Properties of Cr-Doped TiO ₂ Thin Films. Sensor Letters, 2011, 9, 1697-1703.	0.4	17
31	Structure and photoluminescence of ultrathin films of SnO2 nanoparticles synthesized by means of pulsed laser deposition. Journal of Applied Physics, 2010, 108, .	2.5	78
32	Optical Properties Tuning of SnO2Films by Metal Incorporation (Pt,Pd): Correlation with Microstructure Change. Japanese Journal of Applied Physics, 2009, 48, 072501.	1.5	9