GiovanniMaria Piccini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4076785/publications.pdf

Version: 2024-02-01

31 papers

1,924 citations

20 h-index 31 g-index

34 all docs

34 docs citations

times ranked

34

2114 citing authors

#	Article	IF	CITATIONS
1	<i>Ab initio</i> molecular dynamics with enhanced sampling in heterogeneous catalysis. Catalysis Science and Technology, 2022, 12, 12-37.	4.1	29
2	Enantioselektive Tailâ€toâ€Headâ€Terpencyclisierungen durch optisch aktive hexamere Resorcin[4]arenâ€Kapselderivate. Angewandte Chemie, 2022, 134, .	2.0	2
3	Enantioselective Tailâ€ŧoâ€Head Terpene Cyclizations by Optically Active Hexameric Resorcin[4]arene Capsule Derivatives. Angewandte Chemie - International Edition, 2022, 61, .	13.8	17
4	Mimicry of the proton wire mechanism of enzymes inside a supramolecular capsule enables \hat{l}^2 -selective O-glycosylations. Nature Chemistry, 2022, 14, 985-994.	13.6	23
5	Understanding the binding properties of phosphorylated glycoluril-derived molecular tweezers and selective nanomolar binding of natural polyamines in aqueous solution. Organic and Biomolecular Chemistry, 2021, 19, 3628-3633.	2.8	3
6	Confinement effects and acid strength in zeolites. Nature Communications, 2021, 12, 2630.	12.8	90
7	Deep learning the slow modes for rare events sampling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	104
8	A metadynamics perspective on the reduction mechanism of the Pt(IV) asplatin prodrug. Journal of Computational Chemistry, 2020, 41, 290-294.	3.3	3
9	Tautomeric Equilibrium in Condensed Phases. Journal of Chemical Theory and Computation, 2020, 16, 6027-6031.	5.3	6
10	Overriding Intrinsic Reactivity in Aliphatic Câ^'H Oxidation: Preferential C3/C4 Oxidation of Aliphatic Ammonium Substrates. Angewandte Chemie - International Edition, 2020, 59, 12387-12391.	13.8	16
11	Requirements for Terpene Cyclizations inside the Supramolecular Resorcinarene Capsule: Bound Water and Its Protonation Determine the Catalytic Activity. Journal of the American Chemical Society, 2020, 142, 4400-4410.	13.7	44
12	Including dispersion in density functional theory for adsorption on flat oxide surfaces, in metal–organic frameworks and in acidic zeolites. Physical Chemistry Chemical Physics, 2020, 22, 7577-7585.	2.8	30
13	The reaction mechanism of the azide–alkyne Huisgen cycloaddition. Physical Chemistry Chemical Physics, 2019, 21, 19281-19287.	2.8	8
14	Promoting transparency and reproducibility in enhanced molecular simulations. Nature Methods, 2019, 16, 670-673.	19.0	655
15	Accurate Quantum Chemical Free Energies at Affordable Cost. Journal of Physical Chemistry Letters, 2019, 10, 3727-3731.	4.6	20
16	Chasing the Full Free Energy Landscape of Neuroreceptor/Ligand Unbinding by Metadynamics Simulations. Journal of Chemical Theory and Computation, 2019, 15, 3354-3361.	5.3	53
17	Improving collective variables: The case of crystallization. Journal of Chemical Physics, 2019, 150, 094509.	3.0	38
18	Microscopic description of acid–base equilibrium. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4054-4057.	7.1	28

#	Article	IF	Citations
19	Folding a small protein using harmonic linear discriminant analysis. Journal of Chemical Physics, 2018, 149, 194113.	3.0	34
20	Metadynamics with Discriminants: A Tool for Understanding Chemistry. Journal of Chemical Theory and Computation, 2018, 14, 5040-5044.	5.3	45
21	<i>Ab initio</i> study of methanol and ethanol adsorption on Brønsted sites in zeolite H-MFI. Physical Chemistry Chemical Physics, 2018, 20, 19964-19970.	2.8	29
22	Collective Variables from Local Fluctuations. Journal of Physical Chemistry Letters, 2018, 9, 2776-2781.	4.6	101
23	Variational Flooding Study of a S _N 2 Reaction. Journal of Physical Chemistry Letters, 2017, 8, 580-583.	4.6	23
24	Identifying Slow Molecular Motions in Complex Chemical Reactions. Journal of Physical Chemistry Letters, 2017, 8, 4197-4200.	4.6	12
25	Ab Initio Prediction of Adsorption Isotherms for Small Molecules in Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 14047-14056.	13.7	62
26	Abâ€Initio Calculation of Rate Constants for Molecule–Surface Reactions with Chemical Accuracy. Angewandte Chemie, 2016, 128, 5321-5323.	2.0	13
27	Ab Initio Calculation of Rate Constants for Molecule–Surface Reactions with Chemical Accuracy. Angewandte Chemie - International Edition, 2016, 55, 5235-5237.	13.8	100
28	Accurate Adsorption Thermodynamics of Small Alkanes in Zeolites. Ab initio Theory and Experiment for H-Chabazite. Journal of Physical Chemistry C, 2015, 119, 6128-6137.	3.1	120
29	Effect of Anharmonicity on Adsorption Thermodynamics. Journal of Chemical Theory and Computation, 2014, 10, 2479-2487.	5.3	101
30	Gold Nanowires: A Time-Dependent Density Functional Assessment of Plasmonic Behavior. Journal of Physical Chemistry C, 2013, 117, 17196-17204.	3.1	60
31	Quantum Chemical Free Energies: Structure Optimization and Vibrational Frequencies in Normal Modes. Journal of Chemical Theory and Computation, 2013, 9, 5038-5045.	5.3	53