Christopher J Salice

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4076233/publications.pdf

Version: 2024-02-01

361045 414034 1,157 45 20 32 g-index citations h-index papers 45 45 45 1169 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Comparative Toxicity of Herbicide Active Ingredients, Safener Additives, and Commercial Formulations to the Nontarget Alga <i>Raphidocelis Subcapitata</i> Lenvironmental Toxicology and Chemistry, 2022, 41, 1466-1476.	2.2	10
2	Perfluoroalkyl acids in sediment and water surrounding historical fire training areas at Barksdale Air Force Base. PeerJ, 2022, 10, e13054.	0.9	4
3	Species―and Tissueâ€Specific Chronic Toxicity Values for Northern Bobwhite Quail (<i>Colinus) Tj ETQq1 1 0.7 Sulfonic Acid and Perfluorohexane Sulfonic Acid. Environmental Toxicology and Chemistry, 2022, 41, 219-229.</i>	784314 rgl 2.2	BT /Overloc
4	Key Considerations for Accurate Exposures in Ecotoxicological Assessments of Perfluorinated Carboxylates and Sulfonates. Environmental Toxicology and Chemistry, 2021, 40, 677-688.	2.2	16
5	Per―and Polyfluoroalkyl Substances (PFAS) in Surface Water Near US Air Force Bases: Prioritizing Individual Chemicals and Mixtures for Toxicity Testing and Risk Assessment. Environmental Toxicology and Chemistry, 2021, 40, 871-882.	2.2	41
6	Assessing the Ecological Risks of Per―and Polyfluoroalkyl Substances: Current Stateâ€ofâ€the Science and a Proposed Path Forward. Environmental Toxicology and Chemistry, 2021, 40, 564-605.	2.2	166
7	Sensitivity and Accumulation of Perfluorooctanesulfonate and Perfluorohexanesulfonic Acid in Fathead Minnows (<i>Pimephales promelas</i> Development. Environmental Toxicology and Chemistry, 2021, 40, 811-819.	2.2	14
8	Species―and Tissueâ€Specific Avian Chronic Toxicity Values for Perfluorooctane Sulfonate (PFOS) and a Binary Mixture of PFOS and Perfluorohexane Sulfonate. Environmental Toxicology and Chemistry, 2021, 40, 899-909.	2.2	21
9	Investigating potential toxic effects of pollutants on population growth rates and probability of extinction for a representative squamate. Ecotoxicology, 2021, 30, 175-186.	1.1	3
10	Toxicological Response of (i) Chironomus dilutus (i) in Singleâ€Chemical and Binary Mixture Exposure Experiments with 6 Perfluoralkyl Substances. Environmental Toxicology and Chemistry, 2021, 40, 2319-2333.	2.2	24
11	Chronic Reproductive Toxicity Thresholds for Northern Bobwhite Quail (<i>Colinus virginianus</i> Exposed to Perfluorohexanoic Acid (PFHxA) and a Mixture of Perfluorooctane Sulfonic Acid (PFOS) and PFHxA. Environmental Toxicology and Chemistry, 2021, 40, 2601-2614.	2.2	6
12	Increased temperature and lower resource quality exacerbate chloride toxicity to larval Lithobates sylvaticus (wood frog). Environmental Pollution, 2020, 266, 115188.	3.7	1
13	Intraspecific interactions affect outcomes of pulse toxicity at different Daphnia magna population phases. Environmental Pollution, 2020, 267, 115398.	3.7	3
14	Chronic Reproductive Toxicity of Perfluorooctane Sulfonic Acid and a Simple Mixture of Perfluorooctane Sulfonic Acid and Perfluorohexane Sulfonic Acid to Northern Bobwhite Quail (<i>Colinus virginianus</i>). Environmental Toxicology and Chemistry, 2020, 39, 1101-1111.	2.2	30
15	Will temperature increases associated with climate change potentiate toxicity of environmentally relevant concentrations of chloride on larval green frogs (Lithobates clamitans)?. Science of the Total Environment, 2019, 682, 282-290.	3.9	9
16	Diet quality affects chemical tolerance in the freshwater snail <i>Lymnaea stagnalis</i> Environmental Toxicology and Chemistry, 2018, 37, 1158-1167.	2.2	4
17	Parental diet affects embryogenesis of the great pond snail (<i>Lymnaea stagnalis</i>) exposed to cadmium, pyraclostrobin, and tributyltin. Environmental Toxicology and Chemistry, 2018, 37, 2428-2438.	2.2	9
18	Ecological risk assessment of perfluooroctane sulfonate to aquatic fauna from a bayou adjacent to former fire training areas at a US Air Force installation. Environmental Toxicology and Chemistry, 2018, 37, 2198-2209.	2.2	28

#	Article	IF	CITATIONS
19	Assessing the toxicity of the "inert―safener benoxacor toward <i>Chironomus riparius </i> : Effects of agrochemical mixtures. Environmental Toxicology and Chemistry, 2017, 36, 2660-2670.	2.2	20
20	Transgenerational endpoints provide increased sensitivity and insight into multigenerational responses of Lymnaea stagnalis exposed to cadmium. Environmental Pollution, 2017, 224, 572-580.	3.7	15
21	Temporal monitoring of perfluorooctane sulfonate accumulation in aquatic biota downstream of historical aqueous film forming foam use areas. Environmental Toxicology and Chemistry, 2017, 36, 2022-2029.	2.2	42
22	Direct and indirect effects of petroleum production activities on the western fence lizard (<i>Sceloporus occidentalis</i>) as a surrogate for the dunes sagebrush lizard (<i>Sceloporus) Tj ETQq0 0 0 rgB</i>	T/Obwerloo	k 10 Tf 50 61
23	A cost or a benefit? Counterintuitive effects of diet quality and cadmium in Lymnaea stagnalis. Ecotoxicology, 2016, 25, 1771-1781.	1.1	6
24	The pros and cons of ecological risk assessment based on data from different levels of biological organization. Critical Reviews in Toxicology, 2016, 46, 756-784.	1.9	83
25	Energetic endpoints provide early indicators of life history effects in a freshwater gastropod exposed to the fungicide, pyraclostrobin. Environmental Pollution, 2016, 211, 183-190.	3.7	20
26	Improving reptile ecological risk assessment: Oral and dermal toxicity of pesticides to a common lizard species (<i>Sceloporus occidentalis</i>). Environmental Toxicology and Chemistry, 2015, 34, 1778-1786.	2.2	43
27	Chronic Effects of 17α-Ethinylestradiol, Fluoxetine, and the Mixture on Individual and Population-Level End Points in Daphnia magna. Archives of Environmental Contamination and Toxicology, 2015, 68, 603-611.	2.1	20
28	Environmental Fate and Effects of Dichloroacetamide Herbicide Safeners: "Inert―yet Biologically Active Agrochemical Ingredients. Environmental Science and Technology Letters, 2015, 2, 260-269.	3.9	49
29	If you could turn back time: Understanding transgenerational latent effects of developmental exposure to contaminants. Environmental Pollution, 2014, 184, 419-425.	3.7	24
30	Complex interactions between climate change and toxicants: evidence that temperature variability increases sensitivity to cadmium. Ecotoxicology, 2014, 23, 809-817.	1.1	22
31	Unraveling the Relative Importance of Oral and Dermal Contaminant Exposure in Reptiles: Insights from Studies Using the Western Fence Lizard (Sceloporus occidentalis). PLoS ONE, 2014, 9, e99666.	1.1	28
32	Transgenerational cross-tolerance to stress: parental exposure to predators increases offspring contaminant tolerance. Ecotoxicology, 2013, 22, 854-861.	1.1	25
33	Plasticity in offspring contaminant tolerance traits: developmental cadmium exposure trumps parental effects. Ecotoxicology, 2013, 22, 847-853.	1.1	18
34	New insights into parental effects and toxicity: Mate availability and diet in the parental environment affect offspring responses to contaminants. Environmental Pollution, 2013, 180, 41-47.	3.7	6
35	Environmentally relevant concentrations of a common insecticide increase predation risk in a freshwater gastropod. Ecotoxicology, 2013, 22, 42-49.	1.1	13
36	Effects of 17αâ€ethynylestradiol, fluoxetine, and the mixture on life history traits and population growth rates in a freshwater gastropod. Environmental Toxicology and Chemistry, 2013, 32, 2771-2778.	2.2	14

#	Article	IF	CITATION
37	Dietary acclimation affects dietary selection in the freshwater snail Planorbella trivolvis. Journal of Molluscan Studies, 2012, 78, 256-261.	0.4	9
38	Multiple Stressors and Amphibians: Contributions of Adverse Health Effects and Altered Hydroperiod to Population Decline and Extinction. Journal of Herpetology, 2012, 46, 675-681.	0.2	24
39	Speciesâ€specific and transgenerational responses to increasing salinity in sympatric freshwater gastropods. Environmental Toxicology and Chemistry, 2012, 31, 2517-2524.	2.2	9
40	High tolerance to abiotic stressors and invasion success of the slow growing freshwater snail, Melanoides tuberculatus. Biological Invasions, 2012, 14, 385-394.	1.2	39
41	Multiple stressors and complex life cycles: Insights from a populationâ€level assessment of breeding site contamination and terrestrial habitat loss in an amphibian. Environmental Toxicology and Chemistry, 2011, 30, 2874-2882.	2.2	40
42	Adaptive responses and latent costs of multigeneration cadmium exposure in parasite resistant and susceptible strains of a freshwater snail. Ecotoxicology, 2010, 19, 1466-1475.	1.1	35
43	Ecological risk of anthropogenic pollutants to reptiles: Evaluating assumptions of sensitivity and exposure. Environmental Pollution, 2010, 158, 3596-3606.	3.7	86
44	Populationâ€level responses to longâ€term cadmium exposure in two strains of the freshwater gastropod <i>Biomphalaria glabrata</i> : Results from a lifeâ€table response experiment. Environmental Toxicology and Chemistry, 2003, 22, 678-688.	2.2	23
45	Resistance to cadmium and parasite infection are inversely related in two strains of a freshwater gastropod. Environmental Toxicology and Chemistry, 2002, 21, 1398-1403.	2.2	47