Zuankai Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/4076147/zuankai-wang-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

193	10,725	51	100
papers	citations	h-index	g-index
217 ext. papers	14,277 ext. citations	11.6 avg, IF	6.82 L-index

#	Paper	IF	Citations
193	Pancake bouncing on superhydrophobic surfaces. <i>Nature Physics</i> , 2014 , 10, 515-519	16.2	522
192	High dislocation density-induced large ductility in deformed and partitioned steels. <i>Science</i> , 2017 , 357, 1029-1032	33.3	454
191	Design of robust superhydrophobic surfaces. <i>Nature</i> , 2020 , 582, 55-59	50.4	444
190	Nanograssed Micropyramidal Architectures for Continuous Dropwise Condensation. <i>Advanced Functional Materials</i> , 2011 , 21, 4617-4623	15.6	409
189	A droplet-based electricity generator with high instantaneous power density. <i>Nature</i> , 2020 , 578, 392-3	9 6 50.4	391
188	From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles. <i>ACS Nano</i> , 2015 , 9, 4766-75	16.7	359
187	Nanostructured copper interfaces for enhanced boiling. <i>Small</i> , 2008 , 4, 1084-8	11	340
186	Recurrent filmwise and dropwise condensation on a beetle mimetic surface. ACS Nano, 2015, 9, 71-81	16.7	326
185	Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. <i>Lab on A Chip</i> , 2011 , 11, 3656-62	7.2	283
184	PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation. <i>Journal of Membrane Science</i> , 2017 , 525, 57-67	9.6	243
183	Bio-inspired reversible underwater adhesive. <i>Nature Communications</i> , 2017 , 8, 2218	17.4	243
182	Symmetry breaking in drop bouncing on curved surfaces. <i>Nature Communications</i> , 2015 , 6, 10034	17.4	234
181	A bioinspired multilegged soft millirobot that functions in both dry and wet conditions. <i>Nature Communications</i> , 2018 , 9, 3944	17.4	233
180	Surface charge printing for programmed droplet transport. <i>Nature Materials</i> , 2019 , 18, 936-941	27	208
179	Directional transport of high-temperature Janus droplets mediated by structural topography. <i>Nature Physics</i> , 2016 , 12, 606-612	16.2	190
178	Ultrathin metal/covalent-organic framework membranes towards ultimate separation. <i>Chemical Society Reviews</i> , 2019 , 48, 3811-3841	58.5	182
177	Topological liquid diode. <i>Science Advances</i> , 2017 , 3, eaao3530	14.3	177

(2010-2013)

176	Multimode multidrop serial coalescence effects during condensation on hierarchical superhydrophobic surfaces. <i>Langmuir</i> , 2013 , 29, 881-91	4	175
175	Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces. <i>Nature Communications</i> , 2015 , 6, 7986	17.4	164
174	Polarity-dependent electrochemically controlled transport of water through carbon nanotube membranes. <i>Nano Letters</i> , 2007 , 7, 697-702	11.5	162
173	Bioinspired Interfacial Materials with Enhanced Drop Mobility: From Fundamentals to Multifunctional Applications. <i>Small</i> , 2016 , 12, 1825-39	11	159
172	Wetting of mono and few-layered WS2 and MoS2 films supported on Si/SiO2 substrates. <i>ACS Nano</i> , 2015 , 9, 3023-31	16.7	156
171	Mussel-inspired hydrogels: from design principles to promising applications. <i>Chemical Society Reviews</i> , 2020 , 49, 3605-3637	58.5	153
170	How nanorough is rough enough to make a surface superhydrophobic during water condensation?. <i>Soft Matter</i> , 2012 , 8, 8786	3.6	148
169	Activating the microscale edge effect in a hierarchical surface for frosting suppression and defrosting promotion. <i>Scientific Reports</i> , 2013 , 3, 2515	4.9	147
168	Evaporation of droplets on superhydrophobic surfaces: surface roughness and small droplet size effects. <i>Physical Review Letters</i> , 2012 , 109, 116101	7.4	137
167	Impact dynamics and rebound of water droplets on superhydrophobic carbon nanotube arrays. <i>Applied Physics Letters</i> , 2007 , 91, 023105	3.4	124
166	Harnessing Solar-Driven Photothermal Effect toward the Water-Energy Nexus. <i>Advanced Science</i> , 2019 , 6, 1900883	13.6	104
165	Remote Control over Underwater Dynamic Attachment/Detachment and Locomotion. <i>Advanced Materials</i> , 2018 , 30, e1801595	24	87
164	Mimosa Origami: A nanostructure-enabled directional self-organization regime of materials. <i>Science Advances</i> , 2016 , 2, e1600417	14.3	86
163	Omnidirectional Self-Assembly of Transparent Superoleophobic Nanotextures. ACS Nano, 2017, 11, 587	7- <u>5</u> 0. 6	84
162	Long-range spontaneous droplet self-propulsion on wettability gradient surfaces. <i>Scientific Reports</i> , 2017 , 7, 7552	4.9	80
161	Combined micro-/nanoscale surface roughness for enhanced hydrophobic stability in carbon nanotube arrays. <i>Applied Physics Letters</i> , 2007 , 90, 143117	3.4	79
160	Electrowetting on liquid-infused film (EWOLF): complete reversibility and controlled droplet oscillation suppression for fast optical imaging. <i>Scientific Reports</i> , 2014 , 4, 6846	4.9	77
159	Microfluidic CD4+ T-cell counting device using chemiluminescence-based detection. <i>Analytical Chemistry</i> , 2010 , 82, 36-40	7.8	77

158	A high-efficiency solar desalination evaporator composite of corn stalk, Mcnts and TiO2: ultra-fast capillary water moisture transportation and porous bio-tissue multi-layer filtration. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 349-357	13	76
157	Biological and Engineered Topological Droplet Rectifiers. <i>Advanced Materials</i> , 2019 , 31, e1806501	24	71
156	Controlling drop bouncing using surfaces with gradient features. <i>Applied Physics Letters</i> , 2015 , 107, 051	6904	71
155	Interfacial Engineering of Bimetallic Ag/Pt Nanoparticles on Reduced Graphene Oxide Matrix for Enhanced Antimicrobial Activity. <i>ACS Applied Materials & District Materials & Dis</i>	9.5	71
154	Supramolecular silicone coating capable of strong substrate bonding, readily damage healing, and easy oil sliding. <i>Science Advances</i> , 2019 , 5, eaaw5643	14.3	71
153	Superhydrophobic surface with hierarchical architecture and bimetallic composition for enhanced antibacterial activity. <i>ACS Applied Materials & District Research</i> , 1918-1919 (2018-15)	9.5	71
152	Hierarchical hollow MoS2 microspheres as materials for conductometric NO2 gas sensors. <i>Sensors and Actuators B: Chemical</i> , 2019 , 282, 259-267	8.5	71
151	Tip-induced flipping of droplets on Janus pillars: From local reconfiguration to global transport. <i>Science Advances</i> , 2020 , 6, eabb4540	14.3	69
150	Directed rebounding of droplets by microscale surface roughness gradients. <i>Applied Physics Letters</i> , 2010 , 96, 234103	3.4	66
149	Toward large-scale fabrication of triboelectric nanogenerator (TENG) with silk-fibroin patches film via spray-coating process. <i>Nano Energy</i> , 2017 , 41, 359-366	17.1	65
148	Dopamine-Triggered Hydrogels with High Transparency, Self-Adhesion, and Thermoresponse as Skinlike Sensors. <i>ACS Nano</i> , 2021 , 15, 1785-1794	16.7	63
147	Suppressing Ice Nucleation of Supercooled Condensate with Biphilic Topography. <i>Physical Review Letters</i> , 2018 , 120, 075902	7.4	59
146	Pancake bouncing: simulations and theory and experimental verification. <i>Langmuir</i> , 2014 , 30, 13021-32	4	59
145	Do droplets always move following the wettability gradient?. <i>Applied Physics Letters</i> , 2011 , 98, 204104	3.4	55
144	SLIPS-TENG: robust triboelectric nanogenerator with optical and charge transparency using a slippery interface. <i>National Science Review</i> , 2019 , 6, 540-550	10.8	54
143	Underwater Superoleophobic Membrane with Enhanced Oil Water Separation, Antimicrobial, and Antifouling Activities. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500664	4.6	53
142	Nanogenerators with Superwetting Surfaces for Harvesting Water/Liquid Energy. <i>Advanced Functional Materials</i> , 2020 , 30, 1908252	15.6	50
141	Creep mitigation in composites using carbon nanotube additives. <i>Nanotechnology</i> , 2007 , 18, 185703	3.4	49

140	Three-dimensional capillary ratchet-induced liquid directional steering. <i>Science</i> , 2021 , 373, 1344-1348	33.3	49
139	Multistimuli-Responsive Microstructured Superamphiphobic Surfaces with Large-Range, Reversible Switchable Wettability for Oil. <i>ACS Applied Materials & Discrete Superamore</i> , 11, 28478-28486	9.5	46
138	A self-powered acceleration sensor with flexible materials based on triboelectric effect. <i>Nano Energy</i> , 2017 , 31, 469-477	17.1	45
137	A self-powered and high sensitivity acceleration sensor with V-Q-a model based on triboelectric nanogenerators (TENGs). <i>Nano Energy</i> , 2020 , 67, 104228	17.1	45
136	Activation of multiple signaling pathways during the differentiation of mesenchymal stem cells cultured in a silicon nanowire microenvironment. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2014 , 10, 1153-63	6	39
135	Reorganization of cytoskeleton and transient activation of Ca2+ channels in mesenchymal stem cells cultured on silicon nanowire arrays. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 13295-304	9.5	39
134	Strain Engineering of Wave-like Nanofibers for Dynamically Switchable Adhesive/Repulsive Surfaces. <i>Advanced Functional Materials</i> , 2016 , 26, 399-407	15.6	39
133	Designing biomimetic liquid diodes. <i>Soft Matter</i> , 2019 , 15, 1902-1915	3.6	38
132	Nanostructured silver nanowires-graphene hybrids for enhanced electrochemical detection of hydrogen peroxide. <i>Applied Physics Letters</i> , 2013 , 102, 213104	3.4	36
131	The rational design of a peptide-based hydrogel responsive to H2S. <i>Chemical Communications</i> , 2015 , 51, 17273-6	5.8	35
130	Droplets Can Rebound toward Both Directions on Textured Surfaces with a Wettability Gradient. <i>Langmuir</i> , 2016 , 32, 346-51	4	35
129	Skin-Integrated Graphene-Embedded Lead Zirconate Titanate Rubber for Energy Harvesting and Mechanical Sensing. <i>Advanced Materials Technologies</i> , 2019 , 4, 1900744	6.8	34
128	Wetting and electrowetting properties of carbon nanotube templated parylene films. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 4296-9	3.4	34
127	Desuccinylation-Triggered Peptide Self-Assembly: Live Cell Imaging of SIRT5 Activity and Mitochondrial Activity Modulation. <i>Journal of the American Chemical Society</i> , 2020 , 142, 18150-18159	16.4	34
126	Multi-Mode Water-Tube-Based Triboelectric Nanogenerator Designed for Low-Frequency Energy Harvesting with Ultrahigh Volumetric Charge Density. <i>Advanced Energy Materials</i> , 2021 , 11, 2100038	21.8	34
125	Force analysis and bubble dynamics during flow boiling in silicon nanowire microchannels. International Journal of Heat and Mass Transfer, 2016 , 101, 915-926	4.9	33
124	Self-propelled droplet-based electricity generation. <i>Nanoscale</i> , 2018 , 10, 23164-23169	7.7	33
123	Achieving ultrahigh instantaneous power density of 10 MW/m by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG). <i>Nature Communications</i> 2021 12 5470	17.4	33

122	Highly Solar-Reflective Structures for Daytime Radiative Cooling under High Humidity. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 51409-51417	9.5	32
121	A universal single electrode droplet-based electricity generator (SE-DEG) for water kinetic energy harvesting. <i>Nano Energy</i> , 2021 , 82, 105735	17.1	32
120	Adhesion of Microdroplets on Water-Repellent Surfaces toward the Prevention of Surface Fouling and Pathogen Spreading by Respiratory Droplets. <i>ACS Applied Materials & District Research</i> , 9, 6599-6599-6599-6599-6599-6599-6599-6599	-8608	30
119	Nature-Inspired Strategy for Anticorrosion. <i>Advanced Engineering Materials</i> , 2019 , 21, 1801379	3.5	30
118	Electrocatalytic performance of cubic NiS2 and hexagonal NiS for oxygen reduction reaction. Journal of Catalysis, 2018 , 359, 223-232	7.3	30
117	Bioinspired footed soft robot with unidirectional all-terrain mobility. <i>Materials Today</i> , 2020 , 35, 42-49	21.8	29
116	Spontaneous Wenzel to Cassie dewetting transition on structured surfaces. <i>Physical Review Fluids</i> , 2016 , 1,	2.8	29
115	In Situ Formation of Bismuth-Based Perovskite Heterostructures for High-Performance Cocatalyst-Free Photocatalytic Hydrogen Evolution. <i>Advanced Functional Materials</i> , 2020 , 30, 2006919	15.6	29
114	Boosting the output performance of volume effect electricity generator (VEEG) with water column. <i>Nano Energy</i> , 2020 , 73, 104748	17.1	28
113	Fe3O4/Au/Fe3O4 nanoflowers exhibiting tunable saturation magnetization and enhanced bioconjugation. <i>Nanoscale</i> , 2012 , 4, 747-51	7.7	28
112	Fusion of Slippery Interfaces and Transistor-Inspired Architecture for Water Kinetic Energy Harvesting. <i>Joule</i> , 2020 , 4, 2527-2531	27.8	28
111	Microfluidics Assisted Fabrication of Three-Tier Hierarchical Microparticles for Constructing Bioinspired Surfaces. <i>ACS Nano</i> , 2019 , 13, 3638-3648	16.7	27
110	Interfacial Laser-Induced Graphene Enabling High-Performance Liquid-Solid Triboelectric Nanogenerator. <i>Advanced Materials</i> , 2021 , 33, e2104290	24	27
109	Harvesting ultralow frequency (Nano Energy, 2019 , 65, 104011	17.1	26
108	Macrotextures-induced jumping relay of condensate droplets. <i>Applied Physics Letters</i> , 2019 , 114, 09370	4 3.4	25
107	Breakdown in the directional transport of droplets on the peristome of pitcher plants. Communications Physics, 2018, 1,	5.4	25
106	A fluorinated polymer sponge with superhydrophobicity for high-performance biomechanical energy harvesting. <i>Nano Energy</i> , 2021 , 85, 106021	17.1	25
105	Toward advanced sodium-ion batteries: a wheel-inspired yolk@hell design for large-volume-change anode materials. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 13153-13163	13	24

(2021-2021)

104	Hierarchically Hollow Microfibers as a Scalable and Effective Thermal Insulating Cooler for Buildings. <i>ACS Nano</i> , 2021 , 15, 10076-10083	16.7	24
103	Fully Biodegradable Water Droplet Energy Harvester Based on Leaves of Living Plants. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 56060-56067	9.5	23
102	Inhibiting Random Droplet Motion on Hot Surfaces by Engineering Symmetry-Breaking Janus-Mushroom Structure. <i>Advanced Materials</i> , 2020 , 32, e1907999	24	23
101	Highly efficient thermogenesis from Fe3O4 nanoparticles for thermoplastic material repair both in air and underwater. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 1221-1232	13	22
100	In situ reduction of silver nanoparticles on hybrid polydopamine-copper phosphate nanoflowers with enhanced antimicrobial activity. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 5311-5317	7.3	22
99	Beetle and cactus-inspired surface endows continuous and directional droplet jumping for efficient water harvesting. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 1507-1516	13	22
98	Electronic Skin from High-Throughput Fabrication of Intrinsically Stretchable Lead Zirconate Titanate Elastomer. <i>Research</i> , 2020 , 2020, 1085417	7.8	21
97	Superhydrophobic porous networks for enhanced droplet shedding. <i>Scientific Reports</i> , 2016 , 6, 33817	4.9	20
96	Supercapillary Architecture-Activated Two-Phase Boundary Layer Structures for Highly Stable and Efficient Flow Boiling Heat Transfer. <i>Advanced Materials</i> , 2020 , 32, e1905117	24	20
95	On-site formation of emulsions by controlled air plugs. <i>Small</i> , 2014 , 10, 758-65	11	19
94	A silicon micromachined shock accelerometer with twin-mass-plate structure. <i>Sensors and Actuators A: Physical</i> , 2003 , 107, 50-56	3.9	19
93	Crack engineering for the construction of arbitrary hierarchical architectures. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 23909-23914	11.5	18
92	Inhibiting the Leidenfrost effect above 1,000 LC for sustained thermal cooling <i>Nature</i> , 2022 , 601, 568-55	32 .4	18
91	Improved dynamic stability of superomniphobic surfaces and droplet transport on slippery surfaces by dual-scale re-entrant structures. <i>Chemical Engineering Journal</i> , 2020 , 394, 124871	14.7	18
90	-like slippery surface with stable and mobile water/air contact line. National Science Review, 2021, 8, nwa	ne:1.83	17
89	Protein-Substrate Adhesion in Microcontact Printing Regulates Cell Behavior. <i>Langmuir</i> , 2018 , 34, 1750-1	1 759	16
88	Harvesting energy from high-frequency impinging water droplets by a droplet-based electricity generator. <i>EcoMat</i> , 2021 , 3, e12116	9.4	16
87	Macrotextures-enabled self-propelling of large condensate droplets. <i>Chemical Engineering Journal</i> , 2021 , 405, 126901	14.7	16

86	Rectification of Mobile Leidenfrost Droplets by Planar Ratchets. <i>Small</i> , 2020 , 16, e1901751	11	15
85	How Universal Is the Wetting Aging in 2D Materials. <i>Nano Letters</i> , 2020 , 20, 5670-5677	11.5	14
84	Electrostatic tweezer for droplet manipulation <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119,	11.5	14
83	Patterned Amyloid Materials Integrating Robustness and Genetically Programmable Functionality. <i>Nano Letters</i> , 2019 , 19, 8399-8408	11.5	13
82	Droplet dynamics on slippery surfaces: small droplet, big impact. <i>Biosurface and Biotribology</i> , 2019 , 5, 35-45	1	13
81	Design of ultra-stretchable, highly adhesive and self-healable hydrogels tannic acid-enabled dynamic interactions. <i>Materials Horizons</i> , 2021 , 8, 3409-3416	14.4	13
80	Multi-bioinspired self-cleaning energy-free cooling coatings. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 24276-24282	13	13
79	Single-Crystalline UiO-67-Type Porous Network Stable to Boiling Water, Solvent Loss, and Oxidation. <i>Inorganic Chemistry</i> , 2018 , 57, 6198-6201	5.1	13
78	A bulk effect liquid-solid generator with 3D electrodes for wave energy harvesting. <i>Nano Energy</i> , 2021 , 87, 106218	17.1	13
77	Suppression of composite nanoparticle aggregation through steric stabilization and ligand exchange for colorimetric protein detection. <i>RSC Advances</i> , 2013 , 3, 9681	3.7	12
76	Transfer-Free PZT Thin Films for Flexible Nanogenerators Derived from a Single-Step Modified Sol-Gel Process on 2D Mica. <i>ACS Applied Materials & Sole Sole Sole Sole Sole Sole Sole Sole</i>	9.5	12
75	Horizontal Motion of a Superhydrophobic Substrate Affects the Drop Bouncing Dynamics. <i>Physical Review Letters</i> , 2021 , 126, 234503	7.4	12
74	Dynamic control of droplet jumping by tailoring nanoparticle concentrations. <i>Applied Physics Letters</i> , 2016 , 109, 021601	3.4	12
73	Robust liquid repellency by stepwise wetting resistance. <i>Applied Physics Reviews</i> , 2021 , 8, 031403	17.3	12
72	Microflower-Decorated Superhydrophobic Copper Surface for Dry Condensation. <i>Langmuir</i> , 2019 , 35, 16275-16280	4	11
71	Single wafer fabrication of a symmetric double-sided beamfhass structure using DRIE and wet etching by a novel vertical sidewall protection technique. <i>Journal of Micromechanics and Microengineering</i> , 2010 , 20, 115009	2	11
70	Pressure control model for transport of liquid mercury in carbon nanotubes. <i>Applied Physics Letters</i> , 2007 , 90, 144105	3.4	11
69	Rapid and Persistent Suction Condensation on Hydrophilic Surfaces for High-Efficiency Water Collection. <i>Nano Letters</i> , 2021 , 21, 7411-7418	11.5	11

(2021-2020)

68	Nature-inspired surface topography: design and function. <i>Science China: Physics, Mechanics and Astronomy</i> , 2020 , 63, 1	3.6	11
67	Electrohydrodynamic and Hydroelectric Effects at the WaterBolid Interface: from Fundamentals to Applications. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2000670	4.6	11
66	Biocompatible Vibration-Actuated Omni-Droplets Rectifier with Large Volume Range Fabricated by Femtosecond Laser. <i>Advanced Materials</i> , 2021 , e2108567	24	10
65	Skin-Like Strain Sensors Enabled by Elastomer Composites for Human Machine Interfaces. <i>Coatings</i> , 2020 , 10, 711	2.9	10
64	Monitoring the intracellular calcium response to a dynamic hypertonic environment. <i>Scientific Reports</i> , 2016 , 6, 23591	4.9	10
63	Theoretical investigation and experimental verification of the self-powered acceleration sensor based on triboelectric nanogenerators (TENGs). <i>Extreme Mechanics Letters</i> , 2021 , 42, 101021	3.9	10
62	A novel, flexible dual-mode power generator adapted for wide dynamic range of the aqueous salinity. <i>Nano Energy</i> , 2021 , 85, 105970	17.1	10
61	Achievement of safer palladium nanocrystals by enlargement of {100} crystallographic facets. <i>Nanotoxicology</i> , 2017 , 11, 907-922	5.3	9
60	Preparation of nanoscale liquid metal droplet wrapped with chitosan and its tribological properties as water-based lubricant additive. <i>Tribology International</i> , 2020 , 148, 106349	4.9	9
59	Controlled cell patterning on bioactive surfaces with special wettability. <i>Journal of Bionic Engineering</i> , 2017 , 14, 440-447	2.7	9
58	Digital microfluidic meter-on-chip. <i>Lab on A Chip</i> , 2020 , 20, 722-733	7.2	9
57	Surface charges as a versatile platform for emerging applications. <i>Science Bulletin</i> , 2020 , 65, 1052-1054	10.6	9
56	Direct ink writing of fluoropolymer/CNT-based superhydrophobic and corrosion-resistant electrodes for droplet energy harvesters and self-powered electronic skins. <i>Nano Energy</i> , 2021 , 86, 1060	0 9 51	9
55	Pancake Jumping of Sessile Droplets <i>Advanced Science</i> , 2022 , e2103834	13.6	8
54	Toward Self-Powered Inertial Sensors Enabled by Triboelectric Effect. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 3072-3087	4	8
53	A flexible and lead-free BCZT thin film nanogenerator for biocompatible energy harvesting. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 4682-4689	7.8	8
52	3D Printed, Solid-State Conductive Ionoelastomer as a Generic Building Block for Tactile Applications. <i>Advanced Materials</i> , 2021 , e2105996	24	7
51	Instant and Strong Underwater Adhesion by Coupling Hygroscopicity and In Situ Photocuring. <i>Chemistry of Materials</i> , 2021 , 33, 8822-8830	9.6	7

50	Mangrove Inspired Anti-Corrosion Coatings. <i>Coatings</i> , 2019 , 9, 725	2.9	7
49	Robust Icephobic Performance of Flexible Needles. <i>ChemNanoMat</i> , 2019 , 5, 175-180	3.5	7
48	A leaf-mimic rain energy harvester by liquid-solid contact electrification and piezoelectricity. <i>Nano Energy</i> , 2021 , 90, 106573	17.1	7
47	Complete Prevention of Contact Electrification by Molecular Engineering. <i>Matter</i> , 2021 , 4, 290-301	12.7	7
46	Self-Powered Multifunction Ionic Skins Based on Gradient Polyelectrolyte Hydrogels <i>ACS Nano</i> , 2022 ,	16.7	7
45	Filmwise-to-Dropwise Condensation Transition Enabled by Patterned High Wetting Contrast. <i>Journal of Heat Transfer</i> , 2015 , 137,	1.8	6
44	Publisher Note: Evaporation of Droplets on Superhydrophobic Surfaces: Surface Roughness and Small Droplet Size Effects [Phys. Rev. Lett. 109, 116101 (2012)]. <i>Physical Review Letters</i> , 2012 , 109,	7.4	6
43	Electrically Controlled Wetting and Dewetting Transition on Silicon Micro-Pillar Arrays. <i>Advanced Science Letters</i> , 2008 , 1, 222-225	0.1	6
42	Explosive Pancake Bouncing on Hot Superhydrophilic Surfaces. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 24321-24328	9.5	6
41	Counterintuitive Ballistic and Directional Liquid Transport on a Flexible Droplet Rectifier. <i>Research</i> , 2020 , 2020, 6472313	7.8	5
40	Pressure-Sensitive Adhesive with Enhanced and Phototunable Underwater Adhesion. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 50451-50460	9.5	5
39	Corrosion protection of Aluminium Alloy 2024 through an epoxy coating embedded with smart microcapsules: The responses of smart microcapsules to corrosive entities. <i>Corrosion Communications</i> , 2021 , 1, 1-9		5
38	Condensation frosting and passive anti-frosting. Cell Reports Physical Science, 2021, 2, 100474	6.1	5
37	Genotyping of Multiple Clinical Samples with a Combined Direct PCR and Magnetic Lateral Flow Assay. <i>IScience</i> , 2018 , 7, 170-179	6.1	5
36	Water Purification/Harvesting: Harnessing Solar-Driven Photothermal Effect toward the WaterEnergy Nexus (Adv. Sci. 18/2019). <i>Advanced Science</i> , 2019 , 6, 1970111	13.6	4
35	Evaporation of Condensate Droplets on Structured Surfaces with Gradient Roughness. <i>Journal of Heat Transfer</i> , 2015 , 137,	1.8	4
34	Superhydrophobic and superoleophilic PH-CNT membrane for emulsified oil-water separation. <i>Desalination</i> , 2022 , 526, 115536	10.3	4
33	Flexible topological liquid diode catheter. <i>Materials Today Physics</i> , 2020 , 12, 100170	8	4

32	Directional Liquid Transport from the Cold Region to the Hot Region on a Topological Surface. <i>Langmuir</i> , 2021 , 37, 5059-5065	4	4
31	Bioinspired Materials: Bioinspired Interfacial Materials with Enhanced Drop Mobility: From Fundamentals to Multifunctional Applications (Small 14/2016). <i>Small</i> , 2016 , 12, 1824-1824	11	4
30	New approach for efficient condensation heat transfer. <i>National Science Review</i> , 2019 , 6, 185-186	10.8	4
29	Strengthening unidirectional liquid pumping using multi-biomimetic structures. <i>Extreme Mechanics Letters</i> , 2021 , 43, 101144	3.9	4
28	Modulation of solid surface with desirable under-liquid wettability based on molecular hydrophilic-lipophilic balance. <i>Chemical Science</i> , 2021 , 12, 6136-6142	9.4	4
27	In situ Reduction of Silver Nanoparticles on Chitosan Hybrid Copper Phosphate Nanoflowers for Highly Efficient Plasmonic Solar-driven Interfacial Water Evaporation. <i>Journal of Bionic Engineering</i> , 2021 , 18, 30-39	2.7	4
26	Skin-integrated, stretchable, transparent triboelectric nanogenerators based on ion-conducting hydrogel for energy harvesting and tactile sensing. <i>Nano Energy</i> , 2022 , 99, 107442	17.1	4
25	Topography-Regulated Disorder-to-Order Transition of Condensation Droplets. <i>Langmuir</i> , 2020 , 36, 61	88ॄ-619	23
24	Cell sorting with combined optical tweezers and microfluidic chip technologies 2010,		3
23	Sustaining Robust Cavities with Slippery Liquid-Liquid Interfaces Advanced Science, 2022, e2103568	13.6	3
22	Revisiting the adhesion mechanism of mussel-inspired chemistry Chemical Science, 2022, 13, 1698-170)5 9.4	3
21	Recent Progress on Plant-Inspired Soft Robotics with Hydrogel Building Blocks: Fabrication, Actuation and Application. <i>Micromachines</i> , 2021 , 12,	3.3	3
20	An Environmental Perception Self-Adaptive Discolorable Hydrogel Film toward Sensing and Display. <i>Advanced Optical Materials</i> , 2021 , 9, 2100116	8.1	3
19	Hydrodynamic constraints on the energy efficiency of droplet electricity generators. <i>Microsystems and Nanoengineering</i> , 2021 , 7, 49	7.7	3
18	One-step process for dual-scale ratchets with enhanced mobility of Leidenfrost droplets. <i>Journal of Colloid and Interface Science</i> , 2020 , 569, 229-234	9.3	2
17	Surface engineering and on-site charge neutralization for the regulation of contact electrification. <i>Nano Energy</i> , 2022 , 91, 106687	17.1	2
16	3D Conformal Fabrication of Piezoceramic Films Advanced Science, 2022, e2106030	13.6	2
15	Bismuth-Based Perovskite Heterostructures: In Situ Formation of Bismuth-Based Perovskite Heterostructures for High-Performance Cocatalyst-Free Photocatalytic Hydrogen Evolution (Adv. Funct. Mater. 52/2020). <i>Advanced Functional Materials</i> , 2020 , 30, 2070343	15.6	1

14	A water droplet motion energy harvester with wafer-level fabrication method. <i>Journal of Micromechanics and Microengineering</i> , 2020 , 30, 065006	2	1
13	Phase-Change Heat Transfer: Supercapillary Architecture-Activated Two-Phase Boundary Layer Structures for Highly Stable and Efficient Flow Boiling Heat Transfer (Adv. Mater. 2/2020). <i>Advanced Materials</i> , 2020 , 32, 2070013	24	1
12	Adhesives: Remote Control over Underwater Dynamic Attachment/Detachment and Locomotion (Adv. Mater. 30/2018). <i>Advanced Materials</i> , 2018 , 30, 1870222	24	1
11	Fundamentals of Microfluidics Devices 2010 , 1-38		1
10	Suppressing electrostatic screening in nanostructured electrode arrays. <i>Journal of Nanoscience and Nanotechnology</i> , 2006 , 6, 1979-84	1.3	1
9	A new scaling number reveals droplet dynamics on vibratory surfaces. <i>Journal of Colloid and Interface Science</i> , 2021 , 608, 2414-2414	9.3	1
8	Control and Patterning of Various Hydrophobic Surfaces: In-situ Modification Realized by Flexible Atmospheric Plasma Stamp Technique. <i>Journal of Bionic Engineering</i> , 2020 , 17, 436-447	2.7	1
7	3D architected temperature-tolerant organohydrogels with ultra-tunable energy absorption. <i>IScience</i> , 2021 , 24, 102789	6.1	1
6	Biomimetic Surfaces for Enhanced Dropwise Condensation Heat Transfer: Mimic Nature and Transcend Nature 2016 , 185-228		1
5	An experimental study of condensation on an aluminum radiant ceiling panel surface with superhydrophobic treatment. <i>Energy and Buildings</i> , 2021 , 252, 111393	7	1
4	Design of micro-nano structures for counter flow diverging microchannel heat sink with extraordinarily high energy efficiency. <i>Applied Thermal Engineering</i> , 2022 , 209, 118229	5.8	1
3	Preparation of shape-controlling VO2(M/R) nanoparticles via one-step hydrothermal synthesis. <i>Frontiers of Optoelectronics</i> , 2020 , 14, 311	2.8	O
2	A Fully Self-Powered Cholesteric Smart Window Actuated by Droplet-Based Electricity Generator. <i>Advanced Optical Materials</i> ,2102274	8.1	О
1	Hydrophilic Slippery Surface Promotes Efficient Defrosting. <i>Langmuir</i> , 2021 , 37, 11931-11938	4	