
Matthias Johannes Reddehase

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4075977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes. Nature, 1989, 337, 651-653.	27.8	353
2	Efficient processing of an antigenic sequence for presentation by MHC class I molecules depends on its neighboring residues in the protein. Cell, 1991, 66, 1145-1153.	28.9	321
3	Structure of the gene of tumâ^' transplantation antigen P91A: The mutated exon encodes a peptide recognized with Ld by cytolytic T cells. Cell, 1989, 58, 293-303.	28.9	305
4	Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nature Reviews Immunology, 2002, 2, 831-844.	22.7	277
5	Simultaneous expression of CD4 and CD8 antigens by a substantial proportion of resting porcine T lymphocytes. European Journal of Immunology, 1987, 17, 1297-1301.	2.9	204
6	Significance of herpesvirus immediate early gene expression in cellular immunity to cytomegalovirus infection. Nature, 1984, 312, 369-371.	27.8	196
7	Enrichment of Immediate-Early 1 (m123/pp89) Peptide-Specific CD8 T Cells in a Pulmonary CD62Llo Memory-Effector Cell Pool during Latent Murine Cytomegalovirus Infection of the Lungs. Journal of Virology, 2000, 74, 11495-11503.	3.4	193
8	CD8 T Cells Control Cytomegalovirus Latency by Epitope-Specific Sensing of Transcriptional Reactivation. Journal of Virology, 2006, 80, 10436-10456.	3.4	165
9	Major Histocompatibility Complex Class I Allele-specific Cooperative and Competitive Interactions between Immune Evasion Proteins of Cytomegalovirus. Journal of Experimental Medicine, 2002, 196, 805-816.	8.5	161
10	Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion. Journal of Experimental Medicine, 2016, 213, 1881-1900.	8.5	143
11	Two Antigenic Peptides from Genes m123 and m164 of Murine Cytomegalovirus Quantitatively Dominate CD8 T-Cell Memory in the H-2 d Haplotype. Journal of Virology, 2002, 76, 151-164.	3.4	135
12	Preemptive CD8 T-Cell Immunotherapy of Acute Cytomegalovirus Infection Prevents Lethal Disease, Limits the Burden of Latent Viral Genomes, and Reduces the Risk of Virus Recurrence. Journal of Virology, 1998, 72, 1797-1804.	3.4	134
13	Presentation of CMV immediate-early antigen to cytolytic T lymphocytes is selectively prevented by viral genes expressed in the early phase. Cell, 1989, 58, 305-315.	28.9	132
14	The cytolytic T lymphocyte response to the murine cytomegalovirus. II. Detection of virus replication stage-specific antigens by separate populations ofin vivo active cytolytic T lymphocyte precursors. European Journal of Immunology, 1984, 14, 56-61.	2.9	122
15	Mouse models of cytomegalovirus latency: overview. Journal of Clinical Virology, 2002, 25, 23-36.	3.1	120
16	Frequent Coinfection of Cells Explains Functional In Vivo Complementation between Cytomegalovirus Variants in the Multiply Infected Host. Journal of Virology, 2005, 79, 9492-9502.	3.4	117
17	Murine Model of Interstitial Cytomegalovirus Pneumonia in Syngeneic Bone Marrow Transplantation: Persistence of Protective Pulmonary CD8-T-Cell Infiltrates after Clearance of Acute Infection. Journal of Virology, 2000, 74, 7496-7507.	3.4	114
18	Distinct γ/δ T cell receptors define two subsets of circulating porcine CD2â^'CD4â^'CD8â^' T lymphocytes*. European Journal of Immunology, 1990, 20, 265-269.	2.9	109

#	Article	IF	CITATIONS
19	Role for Tumor Necrosis Factor Alpha in Murine Cytomegalovirus Transcriptional Reactivation in Latently Infected Lungs. Journal of Virology, 2005, 79, 326-340.	3.4	109
20	Cytomegalovirus Misleads Its Host by Priming of CD8 T Cells Specific for an Epitope Not Presented in Infected Tissues. Journal of Experimental Medicine, 2004, 199, 131-136.	8.5	108
21	Phenotypic discrimination between thymic and extrathymic cd4â^'cd8â^' and cd4+cd8+ porcine t lymphocytes. European Journal of Immunology, 1989, 19, 2011-2016.	2.9	105
22	Murine Model of Cytomegalovirus Latency and Reactivation. Current Topics in Microbiology and Immunology, 2008, 325, 315-331.	1.1	104
23	The Major Virus-Producing Cell Type during Murine Cytomegalovirus Infection, the Hepatocyte, Is Not the Source of Virus Dissemination in the Host. Cell Host and Microbe, 2008, 3, 263-272.	11.0	104
24	Highly Protective In Vivo Function of Cytomegalovirus IE1 Epitope-Specific Memory CD8 T Cells Purified by T-Cell Receptor-Based Cell Sorting. Journal of Virology, 2005, 79, 5400-5413.	3.4	102
25	Focal Transcriptional Activity of Murine Cytomegalovirus during Latency in the Lungs. Journal of Virology, 1999, 73, 482-494.	3.4	101
26	Control of Murine Cytomegalovirus in the Lungs: Relative but Not Absolute Immunodominance of the Immediate-Early 1 Nonapeptide during the Antiviral Cytolytic T-Lymphocyte Response in Pulmonary Infiltrates. Journal of Virology, 1998, 72, 7201-7212.	3.4	100
27	Liver Sinusoidal Endothelial Cells Are a Site of Murine Cytomegalovirus Latency and Reactivation. Journal of Virology, 2009, 83, 8869-8884.	3.4	98
28	The immunogenicity of human and murine cytomegaloviruses. Current Opinion in Immunology, 2000, 12, 390-396.	5.5	97
29	Patchwork Pattern of Transcriptional Reactivation in the Lungs Indicates Sequential Checkpoints in the Transition from Murine Cytomegalovirus Latency to Recurrence. Journal of Virology, 1999, 73, 8612-8622.	3.4	97
30	Viral latency drives â€~memory inflation': a unifying hypothesis linking two hallmarks of cytomegalovirus infection. Medical Microbiology and Immunology, 2012, 201, 551-566.	4.8	94
31	Porcine γ/δ T lymphocyte subsets differing in their propensity to home to lymphoid tissue. European Journal of Immunology, 1990, 20, 2343-2346.	2.9	92
32	TCR-Ligand <i>k</i> _{off} Rate Correlates with the Protective Capacity of Antigen-Specific CD8 ⁺ T Cells for Adoptive Transfer. Science Translational Medicine, 2013, 5, 192ra87.	12.4	91
33	Random, Asynchronous, and Asymmetric Transcriptional Activity of Enhancer-Flanking Major Immediate-Early Genes ie1/3 andie2 during Murine Cytomegalovirus Latency in the Lungs. Journal of Virology, 2001, 75, 2692-2705.	3.4	80
34	The role of CD4 and CD8 T cells in viral infections. Current Opinion in Immunology, 1991, 3, 471-475.	5.5	78
35	Antigen-presenting cells of haematopoietic origin prime cytomegalovirus-specific CD8 T-cells but are not sufficient for driving memory inflation during viral latency. Journal of General Virology, 2011, 92, 1994-2005.	2.9	78
36	The NK Cell Response to Mouse Cytomegalovirus Infection Affects the Level and Kinetics of the Early CD8 ⁺ T-Cell Response. Journal of Virology, 2012, 86, 2165-2175.	3.4	78

#	Article	IF	CITATIONS
37	Cytomegalovirus Inhibits the Engraftment of Donor Bone Marrow Cells by Downregulation of Hemopoietin Gene Expression in Recipient Stroma. Journal of Virology, 1998, 72, 5006-5015.	3.4	77
38	Mouse Model of Cytomegalovirus Disease and Immunotherapy in the Immunocompromised Host: Predictions for Medical Translation that Survived the "Test of Time― Viruses, 2018, 10, 693.	3.3	76
39	Subdominant CD8 T-Cell Epitopes Account for Protection against Cytomegalovirus Independent of Immunodomination. Journal of Virology, 2008, 82, 5781-5796.	3.4	74
40	Cytomegalovirus Encodes a Positive Regulator of Antigen Presentation. Journal of Virology, 2006, 80, 7613-7624.	3.4	69
41	CD8 T-cell-based immunotherapy of cytomegalovirus infection: "proof of concept―provided by the murine model. Medical Microbiology and Immunology, 2008, 197, 125-134.	4.8	69
42	Cellular reservoirs of latent cytomegaloviruses. Medical Microbiology and Immunology, 2019, 208, 391-403.	4.8	69
43	The Immune Evasion Paradox: Immunoevasins of Murine Cytomegalovirus Enhance Priming of CD8 T Cells by Preventing Negative Feedback Regulation. Journal of Virology, 2008, 82, 11637-11650.	3.4	67
44	Virally Infected Mouse Liver Endothelial Cells Trigger CD8+ T-Cell Immunity. Gastroenterology, 2010, 138, 336-346.	1.3	65
45	Mast Cells Expedite Control of Pulmonary Murine Cytomegalovirus Infection by Enhancing the Recruitment of Protective CD8 T Cells to the Lungs. PLoS Pathogens, 2014, 10, e1004100.	4.7	64
46	Resting Porcine T Lymphocytes Expressing Class II Major Histocompatibility Antigen. Immunobiology, 1991, 183, 102-114.	1.9	63
47	The Putative Natural Killer Decoy Early Genem04 (gp34) of Murine Cytomegalovirus Encodes an Antigenic Peptide Recognized by Protective Antiviral CD8 T Cells. Journal of Virology, 2000, 74, 1871-1884.	3.4	63
48	Animal models: Murine cytomegalovirus. Methods in Microbiology, 2002, , 493-IN11.	0.8	63
49	The Viral Chemokine MCK-2 of Murine Cytomegalovirus Promotes Infection as Part of a gH/gL/MCK-2 Complex. PLoS Pathogens, 2013, 9, e1003493.	4.7	61
50	Non-redundant and Redundant Roles of Cytomegalovirus gH/gL Complexes in Host Organ Entry and Intra-tissue Spread. PLoS Pathogens, 2015, 11, e1004640.	4.7	60
51	Processing and Presentation of Murine Cytomegalovirus pORF m164 -Derived Peptide in Fibroblasts in the Face of All Viral Immunosubversive Early Gene Functions. Journal of Virology, 2002, 76, 6044-6053.	3.4	55
52	Peptide Processing Is Critical for T-Cell Memory Inflation and May Be Optimized to Improve Immune Protection by CMV-Based Vaccine Vectors. PLoS Pathogens, 2016, 12, e1006072.	4.7	55
53	Dominant-Negative FADD Rescues the In Vivo Fitness of a Cytomegalovirus Lacking an Antiapoptotic Viral Gene. Journal of Virology, 2008, 82, 2056-2064.	3.4	53
54	Mutual Interference between Cytomegalovirus and Reconstitution of Protective Immunity after Hematopoietic Cell Transplantation. Frontiers in Immunology, 2016, 7, 294.	4.8	53

#	Article	IF	CITATIONS
55	Single cell detection of latent cytomegalovirus reactivation in host tissue. Journal of General Virology, 2011, 92, 1279-1291.	2.9	50
56	IL-33/ST2 pathway drives regulatory T cell dependent suppression of liver damage upon cytomegalovirus infection. PLoS Pathogens, 2017, 13, e1006345.	4.7	50
57	Immune Evasion Proteins of Murine Cytomegalovirus Preferentially Affect Cell Surface Display of Recently Generated Peptide Presentation Complexes. Journal of Virology, 2010, 84, 1221-1236.	3.4	49
58	Experimental Preemptive Immunotherapy of Murine Cytomegalovirus Disease with CD8 T-Cell Lines Specific for ppM83 and pM84, the Two Homologs of Human Cytomegalovirus Tegument Protein ppUL83 (pp65). Journal of Virology, 2001, 75, 6584-6600.	3.4	46
59	Epitope-specific in vivo protection against cytomegalovirus disease by CD8 T cells in the murine model of preemptive immunotherapy. Medical Microbiology and Immunology, 2008, 197, 135-144.	4.8	46
60	In vivo impact of cytomegalovirus evasion of CD8 T-cell immunity: Facts and thoughts based on murine models. Virus Research, 2011, 157, 161-174.	2.2	44
61	In Vivo Replication of Recombinant Murine Cytomegalovirus Driven by the Paralogous Major Immediate-Early Promoter-Enhancer of Human Cytomegalovirus. Journal of Virology, 1999, 73, 5043-5055.	3.4	44
62	Parameters determining the efficacy of adoptive CD8 T-cell therapy of cytomegalovirus infection. Medical Microbiology and Immunology, 2012, 201, 527-539.	4.8	40
63	CD8 T-Cell Immunotherapy of Cytomegalovirus Disease in the Murine Model. Methods in Microbiology, 2010, , 369-420.	0.8	39
64	Molecular modeling of an antigenic complex between a viral peptide and a class I major histocompatibility glycoprotein. Proteins: Structure, Function and Bioinformatics, 1992, 13, 70-85.	2.6	38
65	Control of Cytomegalovirus in Bone Marrow Transplantation Chimeras Lacking the Prevailing Antigen-Presenting Molecule in Recipient Tissues Rests Primarily on Recipient-Derived CD8 T Cells. Journal of Virology, 1998, 72, 7733-7744.	3.4	35
66	Murine cytomegalovirus immune evasion proteins operative in the MHC class I pathway of antigen processing and presentation: state of knowledge, revisions, and questions. Medical Microbiology and Immunology, 2012, 201, 497-512.	4.8	33
67	Polyclonal cytomegalovirus-specific antibodies not only prevent virus dissemination from the portal of entry but also inhibit focal virus spread within target tissues. Medical Microbiology and Immunology, 2008, 197, 151-158.	4.8	32
68	Mast cells as rapid innate sensors of cytomegalovirus by TLR3/TRIF signaling-dependent and -independent mechanisms. Cellular and Molecular Immunology, 2015, 12, 192-201.	10.5	32
69	Redistribution of critical major histocompatibility complex and T cell receptor-binding functions of residues in an antigenic sequence after biterminal substitution. European Journal of Immunology, 1991, 21, 1697-1701.	2.9	31
70	The Efficacy of Antigen Processing Is Critical for Protection against Cytomegalovirus Disease in the Presence of Viral Immune Evasion Proteins. Journal of Virology, 2009, 83, 9611-9615.	3.4	31
71	Evaluating Human T-Cell Therapy of Cytomegalovirus Organ Disease in HLA-Transgenic Mice. PLoS Pathogens, 2015, 11, e1005049.	4.7	31
72	The murine cytomegalovirus M35 protein antagonizes type I IFN induction downstream of pattern recognition receptors by targeting NF-κB mediated transcription. PLoS Pathogens, 2017, 13, e1006382.	4.7	28

#	Article	IF	CITATIONS
73	Shedding Light on the Elusive Role of Endothelial Cells in Cytomegalovirus Dissemination. PLoS Pathogens, 2011, 7, e1002366.	4.7	27
74	Reverse Genetics Modification of Cytomegalovirus Antigenicity and Immunogenicity by CD8 T-Cell Epitope Deletion and Insertion. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-15.	3.0	27
75	Hematopoietic stem cell transplantation with latently infected donors does not transmit virus to immunocompromised recipients in the murine model of cytomegalovirus infection. Medical Microbiology and Immunology, 2008, 197, 251-259.	4.8	26
76	Transactivation of Cellular Genes Involved in Nucleotide Metabolism by the Regulatory IE1 Protein of Murine Cytomegalovirus Is Not Critical for Viral Replicative Fitness in Quiescent Cells and Host Tissues. Journal of Virology, 2008, 82, 9900-9916.	3.4	26
77	Mast cells: innate attractors recruiting protective CD8 T cells to sites of cytomegalovirus infection. Medical Microbiology and Immunology, 2015, 204, 327-334.	4.8	26
78	Identification of a Kd-restricted antigenic peptide encoded by murine cytomegalovirus early gene M84. Journal of General Virology, 2000, 81, 3037-3042.	2.9	26
79	Molecular analysis of herpesviral gene products recognized by protective cytolytic T lymphocytes. Immunology Letters, 1987, 16, 185-192.	2.5	25
80	Stochastic Episodes of Latent Cytomegalovirus Transcription Drive CD8 T-Cell "Memory Inflation―and Avoid Immune Evasion. Frontiers in Immunology, 2021, 12, 668885.	4.8	25
81	Stalemating a clever opportunist: lessons from murine cytomegalovirus. Human Immunology, 2004, 65, 446-455.	2.4	24
82	Antigen presentation under the influence of â€~immune evasion' proteins and its modulation by interferon-gamma: implications for immunotherapy of cytomegalovirus infection with antiviral CD8 T cells. Medical Microbiology and Immunology, 2012, 201, 513-525.	4.8	24
83	Early gene m18, a novel player in the immune response to murine cytomegalovirus. Journal of General Virology, 2002, 83, 311-316.	2.9	22
84	Frequency analysis of cytolytic T cell precursors (CTL-P) generatedin vivo during lethal rabies infection of mice. I. Distinction of CTL-P with different interleukin 2 sensitivity. European Journal of Immunology, 1982, 12, 519-523.	2.9	21
85	Lymphoma Cell Apoptosis in the Liver Induced by Distant Murine Cytomegalovirus Infection. Journal of Virology, 2006, 80, 4801-4819.	3.4	21
86	Immune control in the absence of immunodominant epitopes: implications for immunotherapy of cytomegalovirus infection with antiviral CD8 T cells. Medical Microbiology and Immunology, 2012, 201, 541-550.	4.8	21
87	Reconstitution of CD8 T Cells Protective against Cytomegalovirus in a Mouse Model of Hematopoietic Cell Transplantation: Dynamics and Inessentiality of Epitope Immunodominance. Frontiers in Immunology, 2016, 7, 232.	4.8	21
88	Role of antibodies in confining cytomegalovirus after reactivation from latency: three decades' résumé. Medical Microbiology and Immunology, 2019, 208, 415-429.	4.8	21
89	Porcine T-cell receptors: molecular and biochemical characterization. Veterinary Immunology and Immunopathology, 1994, 43, 13-18.	1.2	19
90	A novel transmembrane domain mediating retention of a highly motile herpesvirus glycoprotein in the endoplasmic reticulum. Journal of General Virology, 2010, 91, 1524-1534.	2.9	19

#	Article	IF	CITATIONS
91	Coincident airway exposure to low-potency allergen and cytomegalovirus sensitizes for allergic airway disease by viral activation of migratory dendritic cells. PLoS Pathogens, 2019, 15, e1007595.	4.7	19
92	Murine Cytomegalovirus Major Immediate-Early Enhancer Region Operating as a Genetic Switch in Bidirectional Gene Pair Transcription. Journal of Virology, 2007, 81, 7805-7810.	3.4	18
93	Immune Evasion Proteins Enhance Cytomegalovirus Latency in the Lungs. Journal of Virology, 2009, 83, 10293-10298.	3.4	18
94	The p36 Isoform of Murine Cytomegalovirus m152 Protein Suffices for Mediating Innate and Adaptive Immune Evasion. Viruses, 2013, 5, 3171-3191.	3.3	18
95	Refining human T-cell immunotherapy of cytomegalovirus disease: a mouse model with â€ [~] humanized' antigen presentation as a new preclinical study tool. Medical Microbiology and Immunology, 2016, 205, 549-561.	4.8	18
96	Insufficient Antigen Presentation Due to Viral Immune Evasion Explains Lethal Cytomegalovirus Organ Disease After Allogeneic Hematopoietic Cell Transplantation. Frontiers in Cellular and Infection Microbiology, 2020, 10, 157.	3.9	17
97	Exogenous introduction of an immunodominant peptide from the non-structural IE1 protein of human cytomegalovirus into the MHC class I presentation pathway by recombinant dense bodies. Journal of General Virology, 2008, 89, 369-379.	2.9	16
98	Synergism between the components of the bipartite major immediate-early transcriptional enhancer of murine cytomegalovirus does not accelerate virus replication in cell culture and host tissues. Journal of General Virology, 2009, 90, 2395-2401.	2.9	16
99	Pediatric roots of cytomegalovirus recurrence and memory inflation in the elderly. Medical Microbiology and Immunology, 2019, 208, 323-328.	4.8	16
100	Revisiting CD8 T-cell â€~Memory Inflation': New Insights with Implications for Cytomegaloviruses as Vaccine Vectors. Vaccines, 2020, 8, 402.	4.4	16
101	Cytomegalovirus-Associated Inhibition of Hematopoiesis Is Preventable by Cytoimmunotherapy With Antiviral CD8 T Cells. Frontiers in Cellular and Infection Microbiology, 2020, 10, 138.	3.9	16
102	Tumor Control in a Model of Bone Marrow Transplantation and Acute Liver-Infiltrating B-Cell Lymphoma: an Unpredicted Novel Function of Cytomegalovirus. Journal of Virology, 2002, 76, 2857-2870.	3.4	15
103	Activation of hepatic natural killer cells and control of liver-adapted lymphoma in the murine model of cytomegalovirus infection. Medical Microbiology and Immunology, 2008, 197, 167-178.	4.8	15
104	Principles for studying in vivo attenuation of virus mutants: defining the role of the cytomegalovirus gH/gL/gO complex as a paradigm. Medical Microbiology and Immunology, 2015, 204, 295-305.	4.8	15
105	Expression of \hat{I}^3/\hat{I}^{T} cell receptors in porcine thymus. Immunobiology, 1993, 188, 70-81.	1.9	14
106	Enhancement of Antigen Presentation by Deletion of Viral Immune Evasion Genes Prevents Lethal Cytomegalovirus Disease in Minor Histocompatibility Antigen-Mismatched Hematopoietic Cell Transplantation. Frontiers in Cellular and Infection Microbiology, 2020, 10, 279.	3.9	14
107	Frequency analysis of cytolytic T lymphocyte precursors (CTL-P) generatedin vivo during lethal rabies infection of mice. II. Rabies virus genus specificity of CTL-P. European Journal of Immunology, 1984, 14, 1039-1043.	2.9	11
108	Consequence of Histoincompatibility beyond GvH-Reaction in Cytomegalovirus Disease Associated with Allogeneic Hematopoietic Cell Transplantation: Change of Paradigm. Viruses, 2021, 13, 1530.	3.3	11

#	Article	IF	CITATIONS
109	The immunogenicity of human and murine cytomegaloviruses. Current Opinion in Immunology, 2000, 12, 738.	5.5	10
110	Adoptive CD8 T Cell Control of Pathogens Cannot Be Improved by Combining Protective Epitope Specificities. Journal of Infectious Diseases, 2008, 197, 622-629.	4.0	10
111	Margaret Gladys Smith, mother of cytomegalovirus: 60th anniversary of cytomegalovirus isolation. Medical Microbiology and Immunology, 2015, 204, 239-241.	4.8	10
112	Function of the cargo sorting dileucine motif in a cytomegalovirus immune evasion protein. Medical Microbiology and Immunology, 2019, 208, 531-542.	4.8	10
113	Host-Adapted Gene Families Involved in Murine Cytomegalovirus Immune Evasion. Viruses, 2022, 14, 128.	3.3	10
114	Cytomegalovirus immune evasion sets the functional avidity threshold for protection by CD8 T cells. Medical Microbiology and Immunology, 2023, 212, 153-163.	4.8	10
115	Ablation of the Regulatory IE1 Protein of Murine Cytomegalovirus Alters In Vivo Pro-inflammatory TNF-alpha Production during Acute Infection. PLoS Pathogens, 2012, 8, e1002901.	4.7	9
116	An endocytic YXXΦ (YRRF) cargo sorting motif in the cytoplasmic tail of murine cytomegalovirus AP2 â€~adapter adapter' protein m04/gp34 antagonizes virus evasion of natural killer cells. Medical Microbiology and Immunology, 2015, 204, 383-394.	4.8	9
117	Noncanonical Expression of a Murine Cytomegalovirus Early Protein CD8 T-Cell Epitope as an Immediate Early Epitope Based on Transcription from an Upstream Gene. Viruses, 2014, 6, 808-831.	3.3	7
118	Mechanism of tumor remission by cytomegalovirus in a murine lymphoma model: evidence for involvement of virally induced cellular interleukin-15. Medical Microbiology and Immunology, 2015, 204, 355-366.	4.8	7
119	Adverse immunological imprinting by cytomegalovirus sensitizing for allergic airway disease. Medical Microbiology and Immunology, 2019, 208, 469-473.	4.8	7
120	Positive Role of the MHC Class-I Antigen Presentation Regulator m04/gp34 of Murine Cytomegalovirus in Antiviral Protection by CD8 T Cells. Frontiers in Cellular and Infection Microbiology, 2020, 10, 454.	3.9	7
121	Enhancerless Cytomegalovirus Is Capable of Establishing a Low-Level Maintenance Infection in Severely Immunodeficient Host Tissues but Fails in Exponential Growth. Journal of Virology, 2010, 84, 6254-6261.	3.4	6
122	TLR3-independent activation of mast cells by cytomegalovirus contributes to control of pulmonary infection. Cellular and Molecular Immunology, 2017, 14, 479-481.	10.5	6
123	Immunodominant Cytomegalovirus Epitopes Suppress Subdominant Epitopes in the Generation of High-Avidity CD8 T Cells. Pathogens, 2021, 10, 956.	2.8	6
124	Therapeutic Vaccination of Hematopoietic Cell Transplantation Recipients Improves Protective CD8 T-Cell Immunotherapy of Cytomegalovirus Infection. Frontiers in Immunology, 2021, 12, 694588.	4.8	6
125	Memory CD8 T Cells Protect against Cytomegalovirus Disease by Formation of Nodular Inflammatory Foci Preventing Intra-Tissue Virus Spread. Viruses, 2022, 14, 1145.	3.3	6
126	â€~Checks and balances' in cytomegalovirus-host cohabitation. Medical Microbiology and Immunology, 2019, 208, 259-261.	4.8	5

#	Article	IF	CITATIONS
127	Direct Evidence for Viral Antigen Presentation during Latent Cytomegalovirus Infection. Pathogens, 2021, 10, 731.	2.8	5
128	Identification of an atypical CD8 T cell epitope encoded by murine cytomegalovirus ORF-M54 gaining dominance after deletion of the immunodominant antiviral CD8 T cell specificities. Medical Microbiology and Immunology, 2015, 204, 317-326.	4.8	4
129	Proliferation and MHC-unrestricted bystander lysis by virus-specific cytotoxic T cells following antigen self-presentation. Medical Microbiology and Immunology, 1998, 187, 17-21.	4.8	3
130	The Anti-apoptotic Murine Cytomegalovirus Protein vMIA-m38.5 Induces Mast Cell Degranulation. Frontiers in Cellular and Infection Microbiology, 2020, 10, 439.	3.9	3
131	Localization of Viral Epitope-Specific CD8 T Cells during Cytomegalovirus Latency in the Lungs and Recruitment to Lung Parenchyma by Airway Challenge Infection. Life, 2021, 11, 918.	2.4	3
132	T Cell Subsets and Defense against Bacteria and Viruses. , 1994, , 237-267.		2
133	Mast Cells Meet Cytomegalovirus: A New Example of Protective Mast Cell Involvement in an Infectious Disease. Cells, 2022, 11, 1402.	4.1	1
134	Non-cognate bystander cytolysis by clonal epitope-specific CTL lines through CD28–CD80 interaction inhibits antibody production: A potential caveat to CD8 T-cell immunotherapy. Cellular Immunology, 2016, 308, 44-56.	3.0	0
135	From basic molecular biology to curative antiviral therapy: the success story of Hepatitis C virology. Medical Microbiology and Immunology, 2019, 208, 1-2.	4.8	0