
Abdolreza Geranmayeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4075942/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of stacking sequence on the mechanical properties of pseudo-ductile thin-ply unidirectional carbon-basalt fibers/epoxy composites. Journal of Industrial Textiles, 2022, 51, 2835S-2852S.	2.4	15
2	Indentation creep behaviour of the magnesium AZ61–0.7Si– <i>x</i> Bi cast alloys. Materials Science and Technology, 2022, 38, 1195-1205.	1.6	0
3	The Temperature Effects on the Mechanical Properties of Pseudo-ductile Thin-ply Unidirectional Carbon-basalt Fibers/Epoxy Hybrid Composites with Different Stacking Sequences. Fibers and Polymers, 2021, 22, 3162-3171.	2.1	13
4	A comparative study on the effects of Gd, Y and La rare-earth elements on the microstructure and creep behavior of AZ81 Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 790, 139712.	5.6	37
5	The Effect of Different Configurations on the Bending and Impact Properties of the Laminated Composites of Aluminum-Hybrid Basalt and Jute Fibers-Epoxy. Fibers and Polymers, 2019, 20, 1054-1060.	2.1	13
6	Interlaminar shear strength and tensile properties of environmentally-friendly fiber metal laminates reinforced by hybrid basalt and jute fibers. Polymer Testing, 2019, 75, 205-212.	4.8	49
7	A comparison of mechanical characteristics of four common orthodontic loops in different ranges of activation and angular bends: The concordance between experiment and finite element analysis. International Orthodontics, 2018, 16, 42-59.	1.9	2
8	High-temperature shear strength and hardness of cast lead-free solders. Metallic Materials, 2017, 55, 211-216.	0.3	2
9	Effect of Zn and Sb Additions on the Impression Creep Behavior of Lead-Free Sn-3.5Ag Solder Alloy. Journal of Electronic Materials, 2016, 45, 764-770.	2.2	9
10	Effect of Li content on the indentation creep characteristics of cast Mg–Li–Zn alloys. Materials & Design, 2015, 75, 184-190.	5.1	47
11	Indentation Creep of Lead-Free Sn-5Sb Solder Alloy with 1.5Âwt% Ag and Bi Additions. Journal of Electronic Materials, 2014, 43, 717-723.	2.2	10
12	Indentation creep of a cast Mg–6Al–1Zn–0.7Si alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 614, 311-318.	5.6	18
13	Indentation creep of lead-free Sn–3.5Ag solder alloy: Effects of cooling rate and Zn/Sb addition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 565, 236-242.	5.6	17
14	Compressive and impression creep behavior of a cast Mg–Al–Zn–Si alloy. Materials Chemistry and Physics, 2013, 139, 79-86.	4.0	20
15	Impression creep behavior of a Cu–6Ni–2Mn–2Sn–2Al alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 535, 202-208.	5.6	16
16	Microstructure and impression creep behavior of lead-free Sn–5Sb solder alloy containing Bi and Ag. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 547, 110-119.	5.6	56
17	Enhanced superplasticity in equal-channel angularly pressed Sn–5Sb alloy. Scripta Materialia, 2011, 64, 521-524.	5.2	40
18	High-temperature shear strength of lead-free Sn–Sb–Ag/Al2O3 composite solder. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3967-3972.	5.6	63

#	Article	IF	CITATIONS
19	A comparative study of room-temperature creep in lead-free tin-based solder alloys. International Journal of Materials Research, 2010, 101, 271-278.	0.3	8
20	Impression Creep of a Lead-Free Sn-1.7Sb-1.5Ag Solder Reinforced by Submicron-Size Al2O3 Particles. Journal of Electronic Materials, 2010, 39, 215-222.	2.2	26
21	Effect of rare earth element additions on the impression creep of Sn–9Zn solder alloy. Journal of Materials Science: Materials in Electronics, 2010, 21, 58-64.	2.2	19
22	Impression creep of the rare-earth doped Sn–2%Bi lead-free solder alloy. Journal of Materials Science: Materials in Electronics, 2010, 21, 262-269.	2.2	10
23	Impression creep study of a Cu–0.3Cr–0.1Ag alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 2702-2708.	5.6	31
24	Effect of isothermal aging on room temperature impression creep of lead free Sn–9Zn and Sn–8Zn–3Bi solders. Materials Science and Technology, 2010, 26, 1001-1007.	1.6	4
25	Creep Behavior of Copper and Cu–0.3Cr–0.1Ag Alloy. Journal of Engineering Materials and Technology, Transactions of the ASME, 2010, 132, .	1.4	5
26	A comparison of impression, indentation and impression-relaxation creep of lead-free Sn–9Zn and Sn–8Zn–3Bi solders at room temperature. Journal of Materials Science: Materials in Electronics, 2009, 20, 312-318.	2.2	16
27	Effects of Ag and Al Additions on the Structure and Creep Properties of Sn-9Zn Solder Alloy. Journal of Electronic Materials, 2009, 38, 330-337.	2.2	13
28	Indentation creep of lead-free Sn–9Zn and Sn–8Zn–3Bi solder alloys. Materials & Design, 2009, 30, 574-580.	5.1	72
29	Effect of cooling rate on the room-temperature impression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 487, 20-25.	5.6	35
30	Impression creep of hypoeutectic Sn–Zn lead-free solder alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 491, 110-116.	5.6	47
31	Creep of dilute tin based lead free solder alloys as replacements of Sn–Pb solders. Materials Science and Technology, 2008, 24, 803-808.	1.6	10
32	Creep of lead-free Sn-3.8Ag and Sn-3.8Ag-0.7Cu solder alloy as replacements of Sn-Pb solder used in microelectronic packaging. , 2008, , .		1
33	Impression creep behavior of cast Pb–Sb alloys. Journal of Alloys and Compounds, 2007, 427, 124-129.	5.5	46
34	Impression creep behavior of lead-free Sn–5Sb solder alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 448, 287-293.	5.6	74
35	Indentation creep study of lead-free Sn–5%Sb solder alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 457, 173-179.	5.6	46
36	Effect of cooling rate on the room-temperature indentation creep of cast lead-free Sn-Bi solder alloys. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 2302-2308.	1.8	22

#	Article	IF	CITATIONS
37	Room-temperature indentation creep of lead-free Sn–Bi solder alloys. Journal of Materials Science: Materials in Electronics, 2007, 18, 1071-1078.	2.2	40
38	Effect of Homogenization on the Indentation Creep of Cast Lead-Free Sn-5%Sb Solder Alloy. Journal of Electronic Materials, 2007, 36, 1703-1710.	2.2	20
39	Indentation creep of lead-free Sn-Bi solder alloys as replacements of Sn-Pb used in microelectronic packaging. Electronics Manufacturing Technology Symposium (IEMT), IEEE/CPMT International, 2006, , .	0.0	0
40	Room-temperature indentation creep of lead-free Sn-5%Sb solder alloy. Journal of Electronic Materials, 2005, 34, 1002-1009.	2.2	47
41	Power law indentation creep of Sn-5% Sb solder alloy. Journal of Materials Science, 2005, 40, 3361-3366.	3.7	47