Christian Pylatiuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4074993/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Results of an Internet survey of myoelectric prosthetic hand users. Prosthetics and Orthotics International, 2007, 31, 362-370.	1.0	204
2	Design and Evaluation of a Low-Cost Force Feedback System for Myoelectric Prosthetic Hands. Journal of Prosthetics and Orthotics, 2006, 18, 57-61.	0.4	129
3	A comparison of the grip force distribution in natural hands and in prosthetic hands. Disability and Rehabilitation, 2004, 26, 705-711.	1.8	106
4	The FLUIDHAND III: A Multifunctional Prosthetic Hand. Journal of Prosthetics and Orthotics, 2009, 21, 91-96.	0.4	61
5	A hydraulically driven multifunctional prosthetic hand. Robotica, 2005, 23, 293-299.	1.9	59
6	Automated high-throughput heartbeat quantification in medaka and zebrafish embryos under physiological conditions. Scientific Reports, 2020, 10, 2046.	3.3	57
7	Development of a miniaturised hydraulic actuation system for artificial hands. Sensors and Actuators A: Physical, 2008, 141, 548-557.	4.1	51
8	Distribution of grip force in three different functional prehension patterns. Journal of Medical Engineering and Technology, 2006, 30, 176-182.	1.4	49
9	Automatic Zebrafish Heartbeat Detection and Analysis for Zebrafish Embryos. Zebrafish, 2014, 11, 379-383.	1.1	49
10	High-Throughput Screening of Zebrafish Embryos Using Automated Heart Detection and Imaging. Journal of the Association for Laboratory Automation, 2012, 17, 435-442.	2.8	47
11	DiversityScanner: Robotic handling of small invertebrates with machine learning methods. Molecular Ecology Resources, 2022, 22, 1626-1638.	4.8	39
12	OrthoJacket: an active FES-hybrid orthosis for the paralysed upper extremity. Biomedizinische Technik, 2011, 56, 35-44.	0.8	35
13	Two Multiarticulated Hydraulic Hand Prostheses. Artificial Organs, 2004, 28, 980-986.	1.9	28
14	Recent Developments in Ozone Sensor Technology for Medical Applications. Micromachines, 2020, 11, 624.	2.9	20
15	A New Class of Flexible Fluidic Actuators and their Applications in Medical Engineering. Automatisierungstechnik, 1999, 47, .	0.8	17
16	Automated phenotype pattern recognition of zebrafish for high-throughput screening. Bioengineered, 2016, 7, 261-265.	3.2	16
17	Modularly designed lightweight anthropomorphic robot hand. , 2006, , .		14

18 A modular, low-cost robot for zebrafish handling. , 2012, 2012, 980-3.

12

CHRISTIAN PYLATIUK

#	Article	IF	CITATIONS
19	Fully Automated Pipetting Sorting System for Different Morphological Phenotypes of Zebrafish Embryos. SLAS Technology, 2018, 23, 128-133.	1.9	12
20	Machine Learning Methods for Automated Quantification of Ventricular Dimensions. Zebrafish, 2019, 16, 542-545.	1.1	10
21	Therapeutic Chemical Screen Identifies Phosphatase Inhibitors to Reconstitute PKB Phosphorylation and Cardiac Contractility in ILK-Deficient Zebrafish. Biomolecules, 2018, 8, 153.	4.0	9
22	DIY Automated Feeding and Motion Recording System for the Analysis of Fish Behavior. SLAS Technology, 2019, 24, 394-398.	1.9	9
23	Zebrafish: A Pharmacogenetic Model for Anesthesia. Methods in Enzymology, 2018, 602, 189-209.	1.0	8
24	Long photoperiod impairs learning in male but not female medaka. IScience, 2021, 24, 102784.	4.1	8
25	Design of a body energy harvesting system for the upper extremity. Current Directions in Biomedical Engineering, 2017, 3, 331-334.	0.4	7
26	An automated and high-throughput Photomotor Response platform for chemical screens. , 2015, 2015, 7728-31.		6
27	Semi-automated detection of fractional shortening in zebrafish embryo heart videos. Current Directions in Biomedical Engineering, 2016, 2, 233-236.	0.4	6
28	Automated Classification of Fertilized Zebrafish Embryos. Zebrafish, 2019, 16, 326-328.	1.1	6
29	Mechanical Performance of Actuators in an Active Orthosis for the Upper Extremities. Journal of Robotics, 2011, 2011, 1-7.	0.9	5
30	Systematic assessment of the biocompatibility of materials for inkjet-printed ozone sensors for medical therapy. Flexible and Printed Electronics, 2021, 6, 043003.	2.7	5
31	Methods for the frugal labeler: Multi-class semantic segmentation on heterogeneous labels. PLoS ONE, 2022, 17, e0263656.	2.5	5
32	Kinetic energy scavenging in a prosthetic foot using a fluidic system. Biomedizinische Technik, 2013, 58, 353-8.	0.8	4
33	Design of a mechanism for converting the energy of knee motions by using electroactive polymers. Biomedizinische Technik, 2017, 62, 643-652.	0.8	4
34	Concept for a Permanent, Non-Invasive Blood Pressure Measurement in the Ear. , 2019, , .		3
35	Development of an Experimental Setup for Real-Time In-Line Dissolved Ozone Measurement for Medical Therapy. Ozone: Science and Engineering, 2022, 44, 499-509.	2.5	3
36	An Automated Experimentation System for the Touch-Response Quantification of Zebrafish Larvae. IEEE Transactions on Automation Science and Engineering, 2022, 19, 3007-3019.	5.2	3

CHRISTIAN PYLATIUK

#	Article	IF	CITATIONS
37	Ingenieurtechnische Besonderheiten bei der automatischen Handhabung von biologischen Organismen. Automatisierungstechnik, 2011, 59, 692-698.	0.8	2
38	Robotersysteme für Hochdurchsatzverfahren in der Bioanalysetechnik. Automatisierungstechnik, 2011, 59, 134-140.	0.8	2
39	Portable auricular device for real-time swallow and chew detection. Current Directions in Biomedical Engineering, 2016, 2, 129-133.	0.4	2
40	Automated Versatile DIY Microscope Platform. , 2018, 2018, 5310-5312.		2
41	High-Throughput Data Acquisition Platform for Multi-Larvae Touch-Response Behavior Screening of Zebrafish. IEEE Robotics and Automation Letters, 2022, 7, 858-865.	5.1	2
42	Harvesting kinetic energy to supply autonomous lighting on Nordic Walking poles. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2014, 228, 136-146.	0.7	1
43	Simulation and evaluation of a body energy harvesting device for arm and leg swing motions. AIP Advances, 2021, 11, 065201.	1.3	1
44	Using water-soluble additive manufacturing for cheap and soft silicon organ models. , 2018, , .		1
45	Beispiele für den Einsatz von Automatisierungstechnik bei der Analyse biologischer Modellorganismen. Automatisierungstechnik, 2016, 64, 915-925.	0.8	0