Daohua Sun

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4074755/daohua-sun-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

105
papers5,123
citations33
h-index70
g-index109
ext. papers5,680
ext. citations7
avg, IF5.4
L-index

#	Paper	IF	Citations
105	Tuning the electronic property of Pd nanoparticles by encapsulation within ZIF-67 shells towards enhanced performance in 1,3-butadiene hydrogenation. <i>Catalysis Science and Technology</i> , 2022 , 12, 25	19 ⁵ 2 ⁵ 53	0 ^O
104	Hollow ZSM-5 zeolite encapsulating Pt nanoparticles: Cage-confinement effects for the enhanced catalytic oxidation of benzene <i>Chemosphere</i> , 2021 , 292, 133446	8.4	0
103	State of arts on the bio-synthesis of noble metal nanoparticles and their biological application. <i>Chinese Journal of Chemical Engineering</i> , 2021 , 30, 272-290	3.2	11
102	Durable super-hydrophobic PDMS@SiO@WS sponge for efficient oil/water separation in complex marine environment. <i>Environmental Pollution</i> , 2021 , 269, 116118	9.3	15
101	The development of bifunctional catalysts for carbon dioxide hydrogenation to hydrocarbons via the methanol route: from single component to integrated components. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 5197-5231	13	13
100	Pt Nanoparticles Embedded in KOH-Activated Soybean Straw as an Efficient Catalyst toward Benzene Oxidation. <i>Industrial & Description of the Straw Research</i> , 2021 , 60, 3561-3571	3.9	O
99	Photoinduced Pt-Decorated Expanded Graphite toward Low-Temperature Benzene Catalytic Combustion. <i>Industrial & Decorated Expanded Graphite toward Low-Temperature Benzene Catalytic Combustion. Industrial & Decorated Expanded Graphite toward Low-Temperature Benzene Catalytic Combustion. Industrial & Decorated Expanded Graphite toward Low-Temperature Benzene Catalytic Combustion. Industrial & Decorated Expanded Graphite toward Low-Temperature Benzene Catalytic Combustion. Industrial & Decorated Expanded Graphite toward Low-Temperature Benzene Catalytic Combustion. Industrial & Decorated Expanded Graphite toward Low-Temperature Benzene Catalytic Combustion. Industrial & Decorated Expanded Graphite toward Low-Temperature Benzene Catalytic Combustion. Industrial & Decorated Expanded Graphite Combustion. Industrial & Decorate Combustion Combu</i>	3.9	5
98	Titanium silicalite-1 zeolite encapsulating Au particles as a catalyst for vapor phase propylene epoxidation with H2/O2: a matter of Aulli synergic interaction. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 4428-4436	13	13
97	Solvent-free photo-thermocatalytic oxidation of benzyl alcohol on Pd/TiO2 (B) nanowires. <i>Molecular Catalysis</i> , 2020 , 483, 110771	3.3	9
96	Seed-Induced Zeolitic TS-1 Immobilized with Bioinspired-Au Nanoparticles for Propylene Epoxidation with O2 and H2. <i>Catalysis Letters</i> , 2020 , 150, 1798-1811	2.8	5
95	Green synthesized iron nanoparticles as highly efficient fenton-like catalyst for degradation of dyes. <i>Chemosphere</i> , 2020 , 261, 127618	8.4	14
94	Biophenol-Mediated Solvent-Free Synthesis of Titanium Silicalite-1 to Improve the Acidity Character of Framework Ti toward Catalysis Application. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 12177-12186	8.3	4
93	Preparation of Integrated CuO/ZnO/OS Nanocatalysts by Using Acid-Etched Oyster Shells as a Support for CO2 Hydrogenation. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 7162-7173	8.3	10
92	Coral-like CoMnOx as a Highly Active Catalyst for Benzene Catalytic Oxidation. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 2882-2890	3.9	21
91	High-Flux and Robust CoO Mesh for Efficient Oil/Water Separation in Harsh Environment. <i>ACS Omega</i> , 2019 , 4, 7385-7390	3.9	13
90	Green Photocatalytic Oxidation of Benzyl Alcohol over Noble-Metal-Modified H2Ti3O7 Nanowires. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 9717-9726	8.3	31
89	Role of Mineral Nutrients in Plant-Mediated Synthesis of Three-Dimensional Porous LaCoO3. <i>Industrial & Discourt Communication of the Manager Communication of th</i>	3.9	8

(2016-2019)

Irradiation. Energy Technology, 2019 , 7, 1900017	3.5	8
Plant-mediated synthesis of AgPd/EAl2O3 catalysts for selective hydrogenation of 1,3-butadiene at low temperature. <i>New Journal of Chemistry</i> , 2019 , 43, 13891-13898	3.6	9
Diatomite Supported Pt Nanoparticles as Efficient Catalyst for Benzene Removal. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 14008-14015	3.9	21
The Influence of Active Biomolecules in Plant Extracts on the Performance of Au/TS-1 Catalysts in Propylene Epoxidation. <i>European Journal of Inorganic Chemistry</i> , 2019 , 2019, 2853-2859	2.3	3
Catalytic benzene oxidation by biogenic Pd nanoparticles over 3D-ordered mesoporous CeO2. <i>Chemical Engineering Journal</i> , 2019 , 362, 41-52	14.7	55
Activity and stability of titanosilicate supported Au catalyst for propylene epoxidation with H2 and O2. <i>Molecular Catalysis</i> , 2018 , 448, 144-152	3.3	19
Facile morphology control of 3D porous CeO for CO oxidation <i>RSC Advances</i> , 2018 , 8, 21658-21663	3.7	7
Rape Pollen-Templated Synthesis of C,N Self-Doped Hierarchical TiO2 for Selective Hydrogenation of 1,3-Butadiene. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 882-888	8.3	29
High Catalytic Stability for CO Oxidation over Au/TiO2 Catalysts by Cinnamomum camphora Leaf Extract. <i>Industrial & Extract. Industrial & Industrial</i>	3.9	11
Ascorbic acid assisted bio-synthesis of Pd-Pt nanoflowers with enhanced electrochemical properties <i>Electrochimica Acta</i> , 2017 , 228, 474-482	6.7	18
Separation of biosynthesized gold nanoparticles by density gradient centrifugation. <i>Separation Science and Technology</i> , 2017 , 52, 951-957	2.5	2
Plant-Mediated Synthesis of Au Nanoparticles: Separation and Identification of Active Biomolecule in the Water Extract of Cacumen Platycladi. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 5262-5270	3.9	28
Plant-Mediated Synthesis of Zinc Oxide Supported Nickel-Palladium Alloy Catalyst for the Selective Hydrogenation of 1,3-Butadiene. <i>ChemCatChem</i> , 2017 , 9, 870-881	5.2	19
Biosynthesized Gold/Activated Carbon Catalyst for Aerobic Glucose Oxidation: Influence of Acid Treatment on Activated Carbon. <i>Chinese Journal of Chemistry</i> , 2017 , 35, 681-686	4.9	2
Biosynthesized Pd/FAl2O3 catalysts for low-temperature 1,3-butadiene hydrogenation: the effect of calcination atmosphere. <i>New Journal of Chemistry</i> , 2017 , 41, 13036-13042	3.6	4
Plant-Mediated Synthesis of Pd Catalysts toward Selective Hydrogenation of 1,3-Butadiene: The Effect of Halide Ions. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 10623-10630	3.9	16
Ultra-efficient removal of chromium from aqueous medium by biogenic iron based nanoparticles. <i>Separation and Purification Technology</i> , 2017 , 174, 466-473	8.3	39
Preparation of Ag/FAl 2 O 3 for ethylene epoxidation by an impregnationBioreduction process with Cinnamomum camphora extract. <i>Chemical Engineering Journal</i> , 2016 , 284, 149-157	14.7	8
	Plant-mediated synthesis of AgPd/iR12O3 catalysts for selective hydrogenation of 1,3-butadiene at low temperature. <i>New Journal of Chemistry</i> , 2019, 43, 13891-13898 Diatomite Supported Pt Nanoparticles as Efficient Catalyst for Benzene Removal. <i>Industrial & Diatomic Chemistry Research</i> , 2019, 58, 14008-14015 The Influence of Active Biomolecules in Plant Extracts on the Performance of Au/TS-1 Catalysts in Propylene Epoxidation. <i>European Journal of Inorganic Chemistry</i> , 2019, 2019, 2019, 2853-2859 Catalytic benzene oxidation by biogenic Pd nanoparticles over 3D-ordered mesoporous CeO2. <i>Chemical Engineering Journal</i> , 2019, 362, 41-52 Activity and stability of titanosilicate supported Au catalyst for propylene epoxidation with H2 and O2. <i>Molecular Catalysis</i> , 2018, 448, 144-152 Facile morphology control of 3D porous CeO for CO oxidation. <i>RSC Advances</i> , 2018, 8, 21658-21663 Rape Pollen-Templated Synthesis of C,N Self-Doped Hierarchical TiO2 for Selective Hydrogenation of 1,3-Butadiene. <i>ACS Sustainable Chemistry and Engineering</i> , 2018, 6, 882-888 High Catalytic Stability for CO Oxidation over Au/TiO2 Catalysts by Cinnamomum camphora Leaf Extract. <i>Industrial & amp: Engineering Chemistry Research</i> , 2018, 57, 14910-14914 Ascorbic acid assisted bio-synthesis of Pd-Pt nanoflowers with enhanced electrochemical properties. <i>Electrochimica Acta</i> , 2017, 228, 474-482 Separation of biosynthesized gold nanoparticles by density gradient centrifugation. <i>Separation Science and Technology</i> , 2017, 52, 951-957 Plant-Mediated Synthesis of Au Nanoparticles: Separation and Identification of Active Biomolecule in the Water Extract of Cacumen Platycladi. <i>Industrial & Bamp: Engineering Chemistry Research</i> , 2017, 56, 5262-5270 Plant-Mediated Synthesis of Zinc Oxide Supported Nickel-Palladium Alloy Catalyst for the Selective Hydrogenation of 1,3-Butadiene. <i>Chem Catchem</i> , 2017, 9, 870-881 Biosynthesized Gold/Activated Carbon Catalyst for Aerobic Glucose Oxidation: Influence of Acid Treatment on Activated Carbon. <i>Chimese </i>	Plant-mediated synthesis of AgPd/BAI2O3 catalysts for selective hydrogenation of 1,3-butadiene at low temperature. New Journal of Chemistry, 2019, 43, 13891-13898 Diatomite Supported Pt Nanoparticles as Efficient Catalyst for Benzene Removal. Industrial & Samp; Engineering Chemistry Research, 2019, 58, 14008-14015 The Influence of Active Biomolecules in Plant Extracts on the Performance of Au/TS-1 Catalysts in Propylene Epoxidation. European Journal of Inorganic Chemistry, 2019, 2019, 2853-2859 Catalytic benzene oxidation by biogenic Pd nanoparticles over 3D-ordered mesoporous CeO2. Chemical Engineering Journal, 2019, 362, 41-52 Activity and stability of titanosilicate supported Au catalyst for propylene epoxidation with H2 and O2. Molecular Catalysis, 2018, 448, 144-152 Facile morphology control of 3D porous CeO for CO oxidation RSC Advances, 2018, 8, 21658-21663 37 Rape Pollen-Templated Synthesis of C,N Self-Doped Hierarchical TiO2 for Selective Hydrogenation of 1,3-Butadiene. ACS Sustainable Chemistry and Engineering, 2018, 6, 882-888 High Catalytic Stability for CO Oxidation over Au/TiO2 Catalysts by Cinnamomum camphora Leaf Extract. Industrial & Samp; Engineering Chemistry Research, 2018, 57, 14910-14914 Ascorbic acid assisted bio-synthesis of Pd-Pt nanoflowers with enhanced electrochemical properties. Electrochimical Acta, 2017, 228, 474-482 Separation of biosynthesized gold nanoparticles by density gradient centrifugation. Separation Science and Technology, 2017, 52, 951-957 Plant-Mediated Synthesis of Au Nanoparticles Separation and Identification of Active Biomolecule in the Water Extract of Cacumen Platycladi. Industrial & Amp; Engineering Chemistry Research, 2017, 56, 5262-5270 Plant-Mediated Synthesis of Fd Catalysts for Aerobic Glucose Oxidation: Influence of Acid Treatment on Activated Carbon Catalyst for Aerobic Glucose Oxidation: Influence of Acid Treatment on Activated Carbon Chimese Journal of Chemistry, 2017, 35, 681-686 Biosynthesized Pd/FAI2O3 catalysts for low-temperature 1

70	Propylene epoxidation over biogenic Au/TS-1 catalysts by Cinnamomum camphora extract in the presence of H2 and O2. <i>Applied Surface Science</i> , 2016 , 366, 292-298	6.7	24
69	Alternative method for preparation of Au/TiO2 with precise Au0/Au\(\textit{H}\). Journal of Chemical Technology and Biotechnology, 2016 , 91, 2125-2130	3.5	10
68	Synthesis of ZnO micro-flowers assisted by a plant-mediated strategy. <i>Journal of Chemical Technology and Biotechnology</i> , 2016 , 91, 1493-1504	3.5	12
67	Monodisperse AgPd alloy nanoparticles as a highly active catalyst towards the methanolysis of ammonia borane for hydrogen generation. <i>RSC Advances</i> , 2016 , 6, 105940-105947	3.7	42
66	Plant-mediated synthesis of highly active iron nanoparticles for Cr (VI) removal: Investigation of the leading biomolecules. <i>Chemosphere</i> , 2016 , 150, 357-364	8.4	66
65	Novel AuPd nanostructures for hydrogenation of 1,3-butadiene. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 4846-4854	13	18
64	Bio-inspired synthesis of metal nanomaterials and applications. Chemical Society Reviews, 2015, 44, 633	05845	317
63	Separation of different shape biosynthesized gold nanoparticles via agarose gel electrophoresis. <i>Separation and Purification Technology</i> , 2015 , 151, 332-337	8.3	7
62	Microwave-Assisted Biosynthesis of Ag/ZrO2 Catalyst with Excellent Activity toward Selective Oxidation of 1,2-Propanediol. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 5373-5380	3.9	9
61	Catalytic Application of Biogenic Platinum Nanoparticles for the Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol. <i>Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry</i> , 2015 , 45, 967-973		6
60	Ni2P-Graphite Nanoplatelets Supported Au P d CoreBhell Nanoparticles with Superior Electrochemical Properties. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 10469-10477	3.8	26
59	Facile synthesis of porous Pd nanoflowers with excellent catalytic activity towards CO oxidation. <i>Chinese Journal of Chemical Engineering</i> , 2015 , 23, 1907-1915	3.2	20
58	Fabrication of Pd/EAl2O3 catalysts for hydrogenation of 2-ethyl-9,10-anthraquinone assisted by plant-mediated strategy. <i>Chemical Engineering Journal</i> , 2015 , 262, 356-363	14.7	33
57	Highly efficient hydrogen generation from methanolysis of ammonia borane on CuPd alloy nanoparticles. <i>Nanotechnology</i> , 2015 , 26, 025401	3.4	15
56	Microorganism-mediated, CTAC-directed synthesis of SERS-sensitive Au nanohorns with three-dimensional nanostructures by Escherichia coli cells. <i>Journal of Chemical Technology and Biotechnology</i> , 2015 , 90, 678-685	3.5	11
55	Rapid Au recovery from aqueous solution by a microorganism-mediated, surfactant-directed approach: Effect of surfactants and SERS of bio-Au. <i>Chemical Engineering Journal</i> , 2015 , 267, 43-50	14.7	10
54	Efficient Ag/CeO2 catalysts for CO oxidation prepared with microwave-assisted biosynthesis. <i>Chemical Engineering Journal</i> , 2015 , 269, 105-112	14.7	37
53	Plant-mediated synthesis of size-controllable Ni nanoparticles with alfalfa extract. <i>Materials Letters</i> , 2014 , 122, 166-169	3.3	41

(2013-2014)

52	Biosynthesis of flat silver nanoflowers: from Flos Magnoliae Officinalis extract to simulation solution. <i>Journal of Nanoparticle Research</i> , 2014 , 16, 1	2.3	4
51	Biosynthesized Ag/\text{\textit{H}}\text{l2O3} catalyst for ethylene epoxidation: the influence of silver precursors. <i>RSC Advances</i> , 2014 , 4, 27597-27603	3.7	22
50	Modeling of Silver Nanoparticle Formation in a Microreactor: Reaction Kinetics Coupled with Population Balance Model and Fluid Dynamics. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 4263-4270	3.9	18
49	Biosynthesized Bimetallic Au P d Nanoparticles Supported on TiO2 for Solvent-Free Oxidation of Benzyl Alcohol. <i>ACS Sustainable Chemistry and Engineering</i> , 2014 , 2, 1752-1759	8.3	85
48	Influence of Au Particle Size on Au/TiO2 Catalysts for CO Oxidation. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 19150-19157	3.8	61
47	Biogenic flower-shaped Au P d nanoparticles: synthesis, SERS detection and catalysis towards benzyl alcohol oxidation. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 1767-1773	13	67
46	Roles of Biomolecules in the Biosynthesis of Silver Nanoparticles: Case of Gardenia jasminoides Extract. <i>Chinese Journal of Chemical Engineering</i> , 2014 , 22, 706-712	3.2	20
45	Plant-Mediated Synthesis of AgPd Alloy Nanoparticles and Their Application as Catalyst toward Selective Hydrogenation. <i>ACS Sustainable Chemistry and Engineering</i> , 2014 , 2, 1212-1218	8.3	60
44	Continuous-flow biosynthesis of AuAg bimetallic nanoparticles in a microreactor. <i>Journal of Nanoparticle Research</i> , 2014 , 16, 1	2.3	10
43	Plant-Mediated Fabrication and Surface Enhanced Raman Property of Flower-Like Au@Pd Nanoparticles. <i>Materials</i> , 2014 , 7, 1360-1369	3.5	24
42	Facile fabrication of Pd nanoparticle/Pichia pastoris catalysts through adsorption-reduction method: a study into effect of chemical pretreatment. <i>Journal of Colloid and Interface Science</i> , 2014 , 433, 204-210	9.3	17
41	Microorganism-mediated, CTAB-directed synthesis of hierarchically branched Au-nanowire/Escherichia coli nanocomposites with strong near-infrared absorbance. <i>Journal of Chemical Technology and Biotechnology</i> , 2014 , 89, 1410-1418	3.5	14
40	Effects of Biomolecules on the Selectivity of Biosynthesized Pd/MgO Catalyst toward Selective Oxidation of Benzyl Alcohol. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 19128-19135	3.9	11
39	Microorganism-mediated, CTAB-directed aggregation of Au nanostructures around Escherichia coli cells: Towards enhanced Au recovery through coordination of cell-CTABEscorbic acid. <i>Separation and Purification Technology</i> , 2014 , 133, 380-387	8.3	3
38	Biosynthesized gold nanoparticles supported over TS-1 toward efficient catalyst for epoxidation of styrene. <i>Chemical Engineering Journal</i> , 2014 , 235, 215-223	14.7	51
37	Microorganism-Mediated Fabrication and Antibacterial Performance of Ag/α-Al2O3 Composites. <i>Current Nanoscience</i> , 2014 , 10, 271-276	1.4	2
36	Quantitative nucleation and growth kinetics of gold nanoparticles via model-assisted dynamic spectroscopic approach. <i>Journal of Colloid and Interface Science</i> , 2013 , 407, 8-16	9.3	25
35	Fabrication of Au/Pd alloy nanoparticle/Pichia pastoris composites: a microorganism-mediated approach. <i>RSC Advances</i> , 2013 , 3, 15389	3.7	15

34	Catalytic gold nanoparticles immobilized on yeast: From biosorption to bioreduction. <i>Chemical Engineering Journal</i> , 2013 , 225, 857-864	14.7	42
33	Microorganism-mediated synthesis of chemically difficult-to-synthesize Au nanohorns with excellent optical properties in the presence of hexadecyltrimethylammonium chloride. <i>Nanoscale</i> , 2013 , 5, 6599-606	7.7	30
32	Green synthesis of AuAg alloy nanoparticles using Cacumen platycladi extract. <i>RSC Advances</i> , 2013 , 3, 1878-1884	3.7	85
31	Trisodium Citrate-Assisted Biosynthesis of Silver Nanoflowers by Canarium album Foliar Broths as a Platform for SERS Detection. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 5085-5094	3.9	29
30	Production of Silver Nanoparticles in a Continuous Stirred Tank Reactor Based on Plant-Mediated Biosynthesis: Flow Behaviors and Residence Time Distribution Prediction by Computational Fluid Dynamics Simulation. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 2280-2289	3.9	10
29	Anatase type extra-framework titanium in TS-1: A vital factor influencing the catalytic activity toward styrene epoxidation. <i>Applied Catalysis A: General</i> , 2013 , 459, 1-7	5.1	44
28	Plant-mediated synthesis of platinum nanoparticles and its bioreductive mechanism. <i>Journal of Colloid and Interface Science</i> , 2013 , 396, 138-45	9.3	92
27	Two-step size- and shape-separation of biosynthesized gold nanoparticles. <i>Separation and Purification Technology</i> , 2013 , 106, 117-122	8.3	39
26	Investigation of active biomolecules involved in the nucleation and growth of gold nanoparticles by Artocarpus heterophyllus Lam leaf extract. <i>Journal of Nanoparticle Research</i> , 2013 , 15, 1	2.3	32
25	Kinetics of liquid phase oxidation of benzyl alcohol with hydrogen peroxide over bio-reduced Au/TS-1 catalysts. <i>Journal of Molecular Catalysis A</i> , 2013 , 366, 215-221		38
24	Preparation of Ag/HAl2O3 for ethylene epoxidation through thermal decomposition assisted by extract of Cinnamomum camphora. <i>RSC Advances</i> , 2013 , 3, 20732	3.7	12
23	Synthesis of Gold Nanoplates with Bioreducing Agent Using Syringe Pumps: A Kinetic Control. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 15753-15762	3.9	35
22	Methanolysis of Ammonia Borane by CoPd Nanoparticles. ACS Catalysis, 2012, 2, 1290-1295	13.1	83
21	Microfluidic biosynthesis of silver nanoparticles: Effect of process parameters on size distribution. <i>Chemical Engineering Journal</i> , 2012 , 209, 568-576	14.7	31
20	A facile synthesis of MPd (M = Co, Cu) nanoparticles and their catalysis for formic acid oxidation. <i>Nano Letters</i> , 2012 , 12, 1102-6	11.5	208
19	Fabrication of Au Nanowire/Pichia pastoris Cell Composites with Hexadecyltrimethylammonium Bromides as a Platform for SERS Detection: A Microorganism-Mediated Approach. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 16651-16659	3.9	13
18	Liquid phase oxidation of benzyl alcohol to benzaldehyde with novel uncalcined bioreduction Au catalysts: High activity and durability. <i>Chemical Engineering Journal</i> , 2012 , 187, 232-238	14.7	91
17	Stable Silver Nanoparticles with Narrow Size Distribution Non-enzymatically Synthesized by Aeromonas sp. SH10 Cells in the Presence of Hydroxyl Ions. <i>Current Nanoscience</i> , 2012 , 8, 838-846	1.4	14

LIST OF PUBLICATIONS

16	Biogenic Silver Nanoparticles by Cacumen Platycladi Extract: Synthesis, Formation Mechanism, and Antibacterial Activity. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 9095-9106	3.9	141
15	Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles. ACS Nano, 2011, 5, 6458-64	16.7	232
14	Ionic liquid-enhanced immobilization of biosynthesized Au nanoparticles on TS-1 toward efficient catalysts for propylene epoxidation. <i>Journal of Catalysis</i> , 2011 , 283, 192-201	7.3	106
13	Vapor-Phase Propylene Epoxidation with H2/O2 over Bioreduction Au/TS-1 Catalysts: Synthesis, Characterization, and Optimization. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 9019-903	28 ^{.9}	44
12	Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. <i>Journal of Nanoparticle Research</i> , 2010 , 12, 1589-1598	2.3	263
11	Nature factory of silver nanowires: Plant-mediated synthesis using broth of Cassia fistula leaf. <i>Chemical Engineering Journal</i> , 2010 , 162, 852-858	14.7	112
10	Effect of recycling flux on performance and characteristics of activated sludge hydrolytic-aerobic recycling process in degradation of 2,4-dichlorophenol. <i>Journal of Hazardous Materials</i> , 2009 , 168, 203-9) ^{12.8}	6
9	Removal of anthraquinone reactive dye from wastewater by batch hydrolytic erobic recycling process. Separation and Purification Technology, 2009, 67, 180-186	8.3	18
8	Isolation and identification of polyphenolic compounds in longan pericarp. <i>Separation and Purification Technology</i> , 2009 , 70, 219-224	8.3	27
7	Continuous-Flow Biosynthesis of Silver Nanoparticles by Lixivium of Sundried Cinnamomum camphora Leaf in Tubular Microreactors. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 608	1 ² 6090	94
6	Visbreaking of heavy petroleum oil catalyzed by SO 2½ /ZrO2 solid super-acid doped with Ni2+ or Sn2+. Frontiers of Chemical Engineering in China, 2008, 2, 186-190		7
5	High efficiency of batch operated biofilm hydrolytic-aerobic recycling process in degradation of 2,4-dichlorophenol. <i>Journal of Hazardous Materials</i> , 2008 , 152, 536-44	12.8	8
4	Accumulation of silver(I) ion and diamine silver complex by Aeromonas SH10 biomass. <i>Applied Biochemistry and Biotechnology</i> , 2007 , 143, 54-62	3.2	40
3	Biosynthesis of silver and gold nanoparticles by novel sundriedCinnamomum camphoraleaf. <i>Nanotechnology</i> , 2007 , 18, 105104	3.4	1123
2	Rapid Preparation Process of Silver Nanoparticles by Bioreduction and Their Characterizations . <i>Chinese Journal of Chemical Engineering</i> , 2006 , 14, 114-117	3.2	145
1	Biosorption and bioreduction of diamine silver complex by Corynebacterium. <i>Journal of Chemical Technology and Biotechnology</i> , 2005 , 80, 285-290	3.5	144