
Alberto Muñoz-Rueda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4074706/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soybean Inoculated With One Bradyrhizobium Strain Isolated at Elevated [CO2] Show an Impaired C and N Metabolism When Grown at Ambient [CO2]. Frontiers in Plant Science, 2021, 12, 656961.	3.6	6
2	Changes in environmental CO2 concentration can modify Rhizobium-soybean specificity and condition plant fitness and productivity. Environmental and Experimental Botany, 2019, 162, 133-143.	4.2	12
3	The interaction between drought and elevated CO 2 in water relations in two grassland species is species-specific. Journal of Plant Physiology, 2018, 220, 193-202.	3.5	24
4	Concentration of phenolic compounds is increased in lettuce grown under high light intensity and elevated CO 2. Plant Physiology and Biochemistry, 2018, 123, 233-241.	5.8	91
5	Elevated CO 2 and salinity are responsible for phenolics-enrichment in two differently pigmented lettuces. Plant Physiology and Biochemistry, 2017, 115, 269-278.	5.8	50
6	The imbalance between C and N metabolism during high nitrate supply inhibits photosynthesis and overall growth in maize (Zea mays L.). Plant Physiology and Biochemistry, 2017, 120, 213-222.	5.8	25
7	Elevated atmospheric CO2 interacts with drought and competition to produce complex results in plant quality and subsequent microbial aquatic decomposition. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 73, 1770-1776.	1.4	2
8	Interacting effects of high light and elevated CO2 on the nutraceutical quality of two differently pigmented Lactuca sativa cultivars (Blonde of Paris Batavia and Oak Leaf). Scientia Horticulturae, 2015, 191, 38-48.	3.6	35
9	Growth and nutritional quality improvement in two differently pigmented lettuce cultivars grown under elevated CO2 and/or salinity. Scientia Horticulturae, 2015, 195, 56-66.	3.6	48
10	Responses of nutrient dynamics in barley seedlings to the interaction of salinity and carbon dioxide enrichment. Environmental and Experimental Botany, 2014, 99, 86-99.	4.2	33
11	Will carbon isotope discrimination be useful as a tool for analysing the functional response of barley plants to salinity under the future atmospheric CO2 conditions?. Plant Science, 2014, 226, 71-81.	3.6	7
12	Lettuce production and antioxidant capacity are differentially modified by salt stress and light intensity under ambient and elevated CO2. Journal of Plant Physiology, 2013, 170, 1517-1525.	3.5	83
13	Barley Growth and Its Underlying Components are Affected by Elevated CO2 and Salt Concentration. Journal of Plant Growth Regulation, 2013, 32, 732-744.	5.1	19
14	Carbon dioxide enrichment moderates salinity-induced effects on nitrogen acquisition and assimilation and their impact on growth in barley plants. Environmental and Experimental Botany, 2013, 87, 148-158.	4.2	22
15	Elevated CO2 reduces stomatal and metabolic limitations on photosynthesis caused by salinity in Hordeum vulgare. Photosynthesis Research, 2012, 111, 269-283.	2.9	95
16	Elevated CO2 reduces the drought effect on nitrogen metabolism in barley plants during drought and subsequent recovery. Environmental and Experimental Botany, 2011, 71, 399-399.	4.2	99
17	Lipoic acid and redox status in barley plants subjected to salinity and elevated CO ₂ . Physiologia Plantarum, 2010, 139, 256-68.	5.2	50
18	Atmospheric CO2 concentration influences the contributions of osmolyte accumulation and cell wall elasticity to salt tolerance in barley cultivars. Journal of Plant Physiology, 2010, 167, 15-22.	3.5	55

Alberto Muñoz-Rueda

#	Article	IF	CITATIONS
19	The impact of salt stress on the water status of barley plants is partially mitigated by elevated CO2. Environmental and Experimental Botany, 2009, 66, 463-470.	4.2	48
20	The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO ₂ . Physiologia Plantarum, 2009, 135, 29-42.	5.2	227
21	Does Elevated CO2 Mitigate the Salt Effect on Photosynthesis in Barley Cultivars?. , 2008, , 1529-1533.		4
22	Elevated CO2 alleviates the impact of drought on barley improving water status by lowering stomatal conductance and delaying its effects on photosynthesis. Environmental and Experimental Botany, 2007, 59, 252-263.	4.2	182
23	Ammonium assimilation in Pinus radiata seedlings: effects of storage treatments, transplanting stress and water regimes after planting under simulated field conditions. Environmental and Experimental Botany, 2006, 55, 1-14.	4.2	12
24	Effect of cold storage treatments and transplanting stress on gas exchange, chlorophyll fluorescence and survival under water limiting conditions of Pinus radiata stock-types. European Journal of Forest Research, 2005, 124, 73-82.	2.5	8
25	Effect of Photorespiratory C2Acids on CO2Assimilation, PS II Photochemistry and the Xanthophyll Cycle in Maize. Photosynthesis Research, 2003, 78, 161-173.	2.9	9
26	Comparative effects of PPT and AOA on photosynthesis and fluorescence chlorophyll parameters in Zea mays. Journal of Plant Physiology, 1997, 151, 641-648.	3.5	16
27	Glycolate accumulation causes a decrease of photosynthesis by inhibiting RUBISCO activity in maize. Journal of Plant Physiology, 1997, 150, 388-394.	3.5	46
28	Effect of Phosphlnothricin (Glufosinate) on Photosynthesis and Chlorophyll Fluorescence Emission by Barley Leaves Illuminated Under Photorespiratory and Non-Photorespiratory Conditions. Journal of Experimental Botany, 1992, 43, 159-165.	4.8	41
29	In vitro and in vivo Effects of Chlorsulfuron in Sensitive and Tolerant plants. Journal of Plant Physiology, 1991, 139, 235-239.	3.5	16
30	Performance and Soil Persistence of Chlorsulfuron when Used for Wheat Production in Spain. Weed Science, 1990, 38, 546-552.	1.5	10
31	Effect of Glyphosate on the Greening Process and Photosynthetic Metabolism in Chlorella pyrenoidosa. Journal of Plant Physiology, 1989, 134, 26-31.	3.5	20
32	Effect of Phosphinothricin (Glufosinate) on Activities of Glutamine Synthetase and Glutamate Dehydrogenase in Medicago sativa L. Journal of Plant Physiology, 1989, 134, 304-307.	3.5	42
33	The effect of asulam on water potential and nitrate reduction. Plant Science, 1986, 46, 21-27.	3.6	2
34	Effects of Glyphosate N-(phosphonomethyl)-glycine on Water Potential, and Activities of Nitrate and Nitrite Reductase and Aspartate Aminotransferase in Lucerne and Clover. Journal of Plant Physiology, 1986, 123, 107-115.	3.5	5
35	Effects of glyphosate [N-(phosphonomethyl)glycine] on photosynthetic pigments, stomatal response and photosynthetic electron transport in Medicago sativa and Trifolium pratense. Physiologia Plantarum, 1986, 66, 63-68.	5.2	26