Adrian Gericke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4074568/publications.pdf

Version: 2024-02-01

471371 501076 44 974 17 28 h-index g-index citations papers 45 45 45 1146 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Five Years Follow-Up of Acrysof Cachet® Angle-Supported Phakic Intraocular Lens Implantation for Myopia Correction. Journal of Ophthalmology, 2022, 2022, 1-8.	0.6	2
2	Allogenic simple limbal epithelial transplantation (alloSLET) from cadaveric donor eyes in patients with persistent corneal epithelial defects. British Journal of Ophthalmology, 2021, 105, 180-185.	2.1	16
3	Age-Related Macular Degeneration: Role of Oxidative Stress and Blood Vessels. International Journal of Molecular Sciences, 2021, 22, 1296.	1.8	64
4	Ablation of lysozyme M-positive cells prevents aircraft noise-induced vascular damage without improving cerebral side effects. Basic Research in Cardiology, 2021, 116, 31.	2.5	23
5	Muscarinic Acetylcholine Receptors in the Retinaâ€"Therapeutic Implications. International Journal of Molecular Sciences, 2021, 22, 4989.	1.8	11
6	Aged Mice Devoid of the M3 Muscarinic Acetylcholine Receptor Develop Mild Dry Eye Disease. International Journal of Molecular Sciences, 2021, 22, 6133.	1.8	11
7	How to Predict the Suitability for Corneal Donorship?. Journal of Clinical Medicine, 2021, 10, 3426.	1.0	2
8	Angiotensin II Induces Oxidative Stress and Endothelial Dysfunction in Mouse Ophthalmic Arteries via Involvement of AT1 Receptors and NOX2. Antioxidants, 2021, 10, 1238.	2.2	21
9	Betulinic Acid Protects from Ischemia-Reperfusion Injury in the Mouse Retina. Cells, 2021, 10, 2440.	1.8	17
10	Corneal Epithelial Stem Cells–Physiology, Pathophysiology and Therapeutic Options. Cells, 2021, 10, 2302.	1.8	21
11	Aircraft noise exposure drives the activation of white blood cells and induces microvascular dysfunction in mice. Redox Biology, 2021, 46, 102063.	3.9	18
12	In vivo analysis of noise dependent activation of white blood cells and microvascular dysfunction in mice. MethodsX, 2021, 8, 101540.	0.7	3
13	Chronic social defeat stress causes retinal vascular dysfunction. Experimental Eye Research, 2021, 213, 108853.	1.2	8
14	Elevated intraocular pressure induces neuronâ€specific β―III â€tubulin expression in nonâ€neuronal vascular cells. Acta Ophthalmologica, 2020, 98, e617.	0.6	4
15	Oxidative Stress and Vascular Dysfunction in the Retina: Therapeutic Strategies. Antioxidants, 2020, 9, 761.	2.2	53
16	The Role of Adrenoceptors in the Retina. Cells, 2020, 9, 2594.	1.8	7
17	Short-Time Ocular Ischemia Induces Vascular Endothelial Dysfunction and Ganglion Cell Loss in the Pig Retina. International Journal of Molecular Sciences, 2019, 20, 4685.	1.8	16
18	Responses of retinal arterioles and ciliary arteries in pigs with acute respiratory distress syndrome (ARDS). Experimental Eye Research, 2019, 184, 152-161.	1,2	21

#	Article	IF	Citations
19	The M1 muscarinic acetylcholine receptor subtype is important for retinal neuron survival in aging mice. Scientific Reports, 2019, 9, 5222.	1.6	22
20	Retinal arteriole reactivity in mice lacking the endothelial nitric oxide synthase (eNOS) gene. Experimental Eye Research, 2019, 181, 150-156.	1.2	15
21	Elevated Intraocular Pressure Causes Abnormal Reactivity of Mouse Retinal Arterioles. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-12.	1.9	34
22	Polyphosphate, the physiological metabolic fuel for corneal cells: a potential biomaterial for ocular surface repair. Biomaterials Science, 2019, 7, 5506-5515.	2.6	6
23	Apolipoprotein E Deficiency Causes Endothelial Dysfunction in the Mouse Retina. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-17.	1.9	18
24	Role of \hat{l}_{\pm} ₁ -adrenoceptor subtypes on corneal epithelial thickness and cell proliferation in mice. American Journal of Physiology - Cell Physiology, 2018, 315, C757-C765.	2.1	9
25	Preparation Steps for Measurement of Reactivity in Mouse Retinal Arterioles Ex Vivo . Journal of Visualized Experiments, 2018, , .	0.2	9
26	Neuroendocrine Modulation of IL-27 in Macrophages. Journal of Immunology, 2017, 199, 2503-2514.	0.4	20
27	Compensatory Vasodilator Mechanisms in the Ophthalmic Artery of Endothelial Nitric Oxide Synthase Gene Knockout Mice. Scientific Reports, 2017, 7, 7111.	1.6	21
28	Reproducibility and Daytime-Dependent Changes of Corneal Epithelial Thickness and Whole Corneal Thickness Measured With Fourier Domain Optical Coherence Tomography. Cornea, 2016, 35, 342-349.	0.9	13
29	The Gatekeepers in the Mouse Ophthalmic Artery: Endothelium-Dependent Mechanisms of Cholinergic Vasodilation. Scientific Reports, 2016, 6, 20322.	1.6	19
30	Uncoupling of Endothelial Nitric Oxide Synthase in Perivascular Adipose Tissue of Diet-Induced Obese Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 78-85.	1.1	158
31	Effect of the M1 Muscarinic Acetylcholine Receptor on Retinal Neuron Number Studied with Gene-Targeted Mice. Journal of Molecular Neuroscience, 2015, 56, 472-479.	1.1	10
32	Effective Melanin Depigmentation of Human and Murine Ocular Tissues: An Improved Method for Paraffin and Frozen Sections. PLoS ONE, 2014, 9, e102512.	1.1	19
33	Role of $\hat{A}1$ -Adrenoceptor Subtypes in Pupil Dilation Studied With Gene-Targeted Mice. Investigative Ophthalmology and Visual Science, 2014, 55, 8295-8301.	3.3	10
34	Role of the M ₃ Muscarinic Acetylcholine Receptor Subtype in Murine Ophthalmic Arteries After Endothelial Removal., 2014, 55, 625.		26
35	The α _{1B} â€adrenoceptor subtype mediates adrenergic vasoconstriction in mouse retinal arterioles with damaged endothelium. British Journal of Pharmacology, 2014, 171, 3858-3867.	2.7	21
36	Role of nitric oxide synthase isoforms for ophthalmic artery reactivity in mice. Experimental Eye Research, 2014, 127, 1-8.	1.2	25

#	Article	IF	CITATIONS
37	Three commercial antibodies against $\hat{l}\pm 1$ -adrenergic receptor subtypes lack specificity in paraffin-embedded sections of murine tissues. Naunyn-Schmiedeberg's Archives of Pharmacology, 2014, 387, 703-706.	1.4	24
38	Contribution of nitric oxide synthase isoforms to cholinergic vasodilation inÂmurine retinal arterioles. Experimental Eye Research, 2013, 109, 60-66.	1.2	26
39	Functional Role of α ₁ -Adrenoceptor Subtypes in Murine Ophthalmic Arteries., 2011, 52, 4795.		16
40	Identification of the Muscarinic Acetylcholine Receptor Subtype Mediating Cholinergic Vasodilation in Murine Retinal Arterioles., 2011, 52, 7479.		41
41	Role of M $<$ sub $>1sub>, M<sub>3sub>, and M<sub>5sub> muscarinic acetylcholine receptors in cholinergic dilation of small arteries studied with gene-targeted mice. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1602-H1608.$	1.5	56
42	Cholinergic Responses of Ophthalmic Arteries in M ₃ and M ₅ Muscarinic Acetylcholine Receptor Knockout Mice., 2009, 50, 4822.		18
43	Impact of $\hat{l}\pm 1$ -adrenoceptor expression on contractile properties of vascular smooth muscle cells. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R1215-R1221.	0.9	11
44	Maggot therapy following orbital exenteration. British Journal of Ophthalmology, 2007, 91, 1715-1716.	2.1	7