Eloi Gari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4073921/publications.pdf

Version: 2024-02-01

279798 243625 2,739 46 23 44 citations h-index g-index papers 47 47 47 3357 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Evaluation of Tumor Interstitial Fluid-Extraction Methods for Proteome Analysis: Comparison of Biopsy Elution versus Centrifugation. Journal of Proteome Research, 2020, 19, 2598-2605.	3.7	4
2	Gene expression and regulatory factors of the mechanistic target of rapamycin (mTOR) complex 1 predict mammalian longevity. GeroScience, 2020, 42, 1157-1173.	4.6	11
3	Characterisation of the inflammatory response triggered by topical ingenol mebutate 0.05% gel in basal cell carcinoma. Australasian Journal of Dermatology, 2020, 61, e200-e207.	0.7	4
4	Protective role of renal proximal tubular alpha-synuclein in the pathogenesis of kidney fibrosis. Nature Communications, 2020, 11, 1943.	12.8	43
5	SIVA-1 regulates apoptosis and synaptic function by modulating XIAP interaction with the death receptor antagonist FAIM-L. Cell Death and Disease, 2020, 11, 82.	6.3	7
6	Psoriasis, metabolic syndrome and cardiovascular risk factors. A populationâ€based study. Journal of the European Academy of Dermatology and Venereology, 2019, 33, 128-135.	2.4	98
7	Cytoplasmic cyclin D1 regulates glioblastoma dissemination. Journal of Pathology, 2019, 248, 501-513.	4.5	21
8	Barley \hat{l}^2 -glucan accelerates wound healing by favoring migration versus proliferation of human dermal fibroblasts. Carbohydrate Polymers, 2019, 210, 389-398.	10.2	39
9	Regulation of small GTPase activity by G1 cyclins. Small GTPases, 2019, 10, 47-53.	1.6	5
10	Cytokeratin Profile of Basal Cell Carcinomas According to the Degree of Sun Exposure and to the Anatomical Localization. American Journal of Dermatopathology, 2018, 40, 342-348.	0.6	6
11	Vulvar Basal Cell Carcinoma: Four Case Reports With Immunohistochemical Study. Journal of Cutaneous Medicine and Surgery, 2017, 21, 457-459.	1,2	9
12	Palbociclib has antitumour effects on <i>Ptenâ€</i> deficient endometrial neoplasias. Journal of Pathology, 2017, 242, 152-164.	4.5	25
13	Polyphosphate is a key factor for cell survival after DNA damage in eukaryotic cells. DNA Repair, 2017, 57, 171-178.	2.8	26
14	Cyclin D1 promotes tumor cell invasion and metastasis by cytoplasmic mechanisms. Molecular and Cellular Oncology, 2016, 3, e1203471.	0.7	11
15	Cytoplasmic cyclin D1 regulates cell invasion and metastasis through the phosphorylation of paxillin. Nature Communications, 2016, 7, 11581.	12.8	92
16	Hepatocyte vitamin D receptor regulates lipid metabolism and mediates experimental diet-induced steatosis. Journal of Hepatology, 2016, 65, 748-757.	3.7	75
17	Characterization of cytoplasmic cyclin D1 as a marker of invasiveness in cancer. Oncotarget, 2016, 7, 26979-26991.	1.8	39
18	Erk1/2 Activation in Stromal Fibroblasts From Sporadic Basal Cell Carcinomas. Dermatologic Surgery, 2015, 41, 677-684.	0.8	4

#	Article	IF	CITATIONS
19	ATPase-Dependent Control of the Mms21 SUMO Ligase during DNA Repair. PLoS Biology, 2015, 13, e1002089.	5.6	33
20	Cyclin D1 localizes in the cytoplasm of keratinocytes during skin differentiation and regulates cell–matrix adhesion. Cell Cycle, 2013, 12, 2510-2517.	2.6	28
21	\hat{l}^2 -catenin and cyclin D1 expression in Gli1-independent basal cell carcinomas. European Journal of Dermatology, 2013, 23, 734-736.	0.6	3
22	The critical size is set at a single-cell level by growth rate to attain homeostasis and adaptation. Nature Communications, 2012, 3, 1012.	12.8	170
23	Translokin (Cep57) Interacts with Cyclin D1 and Prevents Its Nuclear Accumulation in Quiescent Fibroblasts. Traffic, 2011, 12, 549-562.	2.7	13
24	Cyclin D1 interacts and collaborates with Ral GTPases enhancing cell detachment and motility. Oncogene, 2011, 30, 1936-1946.	5.9	25
25	Whi3 regulates morphogenesis in budding yeast by enhancing Cdk functions in apical growth. Cell Cycle, 2009, 8, 1912-1920.	2.6	11
26	Protein Kinase KIS Localizes to RNA Granules and Enhances Local Translation. Molecular and Cellular Biology, 2009, 29, 726-735.	2.3	34
27	Whi3, a Developmental Regulator of Budding Yeast, Binds a Large Set of mRNAs Functionally Related to the Endoplasmic Reticulum. Journal of Biological Chemistry, 2008, 283, 28670-28679.	3.4	44
28	Control of Cell Cycle and Cell Growth by Molecular Chaperones. Cell Cycle, 2007, 6, 2599-2603.	2.6	19
29	Cyclin Cln3 Is Retained at the ER and Released by the J Chaperone Ydj1 in Late G1 to Trigger Cell Cycle Entry. Molecular Cell, 2007, 26, 649-662.	9.7	101
30	Phosphorylation of Hsl1 by Hog1 leads to a G2 arrest essential for cell survival at high osmolarity. EMBO Journal, 2006, 25, 2338-2346.	7.8	127
31	Recruitment of Cdc28 by Whi3 restricts nuclear accumulation of the G1 cyclin–Cdk complex to late G1. EMBO Journal, 2004, 23, 180-190.	7.8	72
32	TOR Regulates the Subcellular Localization of Ime1, a Transcriptional Activator of Meiotic Development in Budding Yeast. Molecular and Cellular Biology, 2003, 23, 7415-7424.	2.3	28
33	Osmotic stress causes a G1 cell cycle delay and downregulation of Cln3/Cdc28 activity in Saccharomyces cerevisiae. Molecular Microbiology, 2001, 39, 1022-1035.	2.5	86
34	Whi3 binds the mRNA of the G ₁ cyclin <i>CLN3</i> to modulate cell fate in budding yeast. Genes and Development, 2001, 15, 2803-2808.	5.9	96
35	The Yeast Ser/Thr Phosphatases Sit4 and Ppz1 Play Opposite Roles in Regulation of the Cell Cycle. Molecular and Cellular Biology, 1999, 19, 2408-2415.	2.3	78
36	G1 cyclins block the Ime1 pathway to make mitosis and meiosis incompatible in budding yeast. EMBO Journal, 1999, 18, 320-329.	7.8	84

#	Article	IF	CITATION
37	Functional analysis of yeast essential genes using a promoter-substitution cassette and the tetracycline-regulatable dual expression system. Yeast, 1998, 14, 1127-1138.	1.7	140
38	An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast [published erratum appears in Nucleic Acids Res 1998 Apr 1;26(7):following 1855]. Nucleic Acids Research, 1998, 26, 942-947.	14.5	251
39	The Cln3 cyclin is down-regulated by translational repression and degradation during the G1 arrest caused by nitrogen deprivation in budding yeast. EMBO Journal, 1997, 16, 7196-7206.	7.8	160
40	A Set of Vectors with a Tetracycline-Regulatable Promoter System for Modulated Gene Expression in Saccharomyces cerevisiae., 1997, 13, 837-848.		555
41	A class of gyrase mutants of Salmonella typhimurium show quinoloneâ€like lethality and require Rec functions for viability. Molecular Microbiology, 1996, 21, 111-122.	2.5	24
42	RNA polymerase (rpoB) mutants selected for increased resistance to gyrase inhibitors in Salmonella typhimurium. Molecular Genetics and Genomics, 1995, 247, 680-692.	2.4	17
43	Spontaneous and reversible high-frequency frameshifts originating a phase transition in the carotenoid biosynthesis pathway of the phototrophic bacterium Rhodobacter sphaeroides 2.4.1. Molecular Genetics and Genomics, 1992, 232, 74-80.	2.4	8
44	Isolation and characterization of a recombination defective-dependent bacteriophage of Rhodobacter sphaeroides. Current Microbiology, 1992, 24, 151-157.	2.2	3
45	Expression of the meta-cleavage pathway operon of the TOL plasmid of Pseudomonas putida in the phototrophic bacterium Rhodobacter sphaeroides. Journal of Biotechnology, 1989, 12, 231-245.	3.8	8
46	Regulation oflac operon in lactose-utilizing mutants of Rhodobacter capsulatus. Current Microbiology, 1988, 16, 185-189.	2.2	2